SCREENING OF PLANT EXTRACTS FOR ANTIMICROBIAL ACTIVITY AGAINST BACTERIA

Alexander Valčík1, Adriana Kolesárková2, Nenad Vuković3, Katarina Rovná1, Jana Petrová1, Viktória Vimmerová1, Lukáš Hleba1, Martin Mellor2, Miroslava Kačániová1*

Address(es): prof. Ing. Miroslava Kačániová PhD.,
1Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
2Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
3Department of Chemistry, Faculty of Science, University of Kragujevac, PO Box 12, Serbia.
*Corresponding author: Miroslava.Kacaniova@uniag.sk

ARTICLE INFO

Published 1. 2. 2014
Received 8. 10. 2013
Revised 21. 11. 2013
Accepted 8. 1. 2014

ABSTRACT

The aim of this study was antimicrobial action of the methanolic extracts of Equisetum arvense L. and Urtica dioica L. against gramnegative and grampositive bacteria. The antimicrobial activities of the extracts against gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1980, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix thermosphacta CCM 4789, Enterococcus raffinosis CCM 4216, Lactobacillus rhamnosus CCM 1828, Pseudobacillus larvae CCM 4483 and Staphylococcus epidermidis CCM 4418 were determined by the disc diffusion method and the microbroth dilution method according to CLSI. Probit analysis was used in this experiment. Of the 2 plant extracts tested, all extracts showed antimicrobial activity against one or more species of microorganisms. The most antimicrobial activity showed methanolic plant extract of E. arvense against S. epidermis with disc diffusion method and with microbroth dilution method against S. rubidaea and plant extract Urtica dioica with disc diffusion method against P. aeruginosa and with microbroth dilution method against S. rubidaea and E. coli.

Keywords: Equisetum arvense L., Urtica dioica L., metanolic extracts, gramnegative and grampositive bacteria

INTRODUCTION

In recent years, the usage of plant materials as food supplement and as alternative medicine has increased due to their phytochemical contents. Among these phytochemicals, alkaloids, carotenoids and phenolics have been widely studied. The most popular area in research is the antioxidant capacities of these substances. Phenolic compounds present in plants exhibit strong antioxidant activity of methanolic and aqueous extracts of the separate parts of Urtica were investigated on the Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans in the Islamic Azad University Science Research Tehran. Its summary illustrated that alcoholic extract of Urtica seed had the greatest influence on the gram positive bacteria; leaves extract had the maximum effect on the gram negative bacteria, its blossom oil had the highest impact on the antifungal attribute and aqueous essence had positive effect on all bacteria except Pseudomonas (Majd et al., 2001).

Consumers life is about changes and development. In some causes, it is question of comeback, in another ones the question of futuristic wishes. nevertheless, the only important thing is to satisfy our customer, but nowadays, do not forget sustainability issues in broader understanding (Horská, 2012).

Both of these plants are well known in the traditional medicine and their history is very long. In this work, antibacterial activity of Equisetum arvense L. and Urtica dioica L. leaves against 5 different grampositive and gramnegative bacteria was studied.

MATERIAL AND METHODS

Preparation of crude extracts

Leaves and stems samples of Equisetum arvense L. and Urtica dioica L. were dried and the dried material was ground to a coarse powder. Fifty grams of the sample of dried plant material was extracted extensively in 150 ml methanol for two weeks at room temperature with gentle shaking. The extract was filtered through filter paper (Whatman no. 54) under vacuum followed by drying by rotary evaporation. Detailed information about medical plants show shows tab. 1.

Nettle, has many important functions in traditional treatment because it has a lot of curable effects. There are many reports which show which plant is very effective in the treatment of blood pressure, diabetes, and prostate hyperplasia, rheumatoid arthritis and allergic rhinitis (Fathi-Azad et al., 2005). Antimicrobial activities of alcoholic and aqueous extracts of the separate parts of Urtica were investigated on the Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans in the Islamic Azad University Science Research Tehran. Its summary illustrated that alcoholic extract of Urtica seed had the greatest influence on the gram positive bacteria; leaves extract had the maximum effect on the gram negative bacteria, its blossom oil had the highest impact on the antifungal attribute and aqueous essence had positive effect on all bacteria except Pseudomonas (Majd et al., 2001).

Consumers life is about changes and development. In some causes, it is question of comeback, in another ones the question of futuristic wishes. nevertheless, the only important thing is to satisfy our customer, but nowadays, do not forget sustainability issues in broader understanding (Horská, 2012).

Both of these plants are well known in the traditional medicine and their history is very long. In this work, antibacterial activity of Equisetum arvense L. and Urtica dioica L. leaves against 5 different grampositive and gramnegative bacteria was studied.

MATERIAL AND METHODS

Preparation of crude extracts

Leaves and stems samples of Equisetum arvense L. and Urtica dioica L. were dried and the dried material was ground to a coarse powder. Fifty grams of the sample of dried plant material was extracted extensively in 150 ml methanol for two weeks at room temperature with gentle shaking. The extract was filtered through filter paper (Whatman no. 54) under vacuum followed by drying by rotary evaporation. Detailed information about medical plants show shows tab. 1.
Tested microorganisms

The following strains of bacteria were used gram-negative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and gram-positive bacteria: Brochothrix thermosphacta CCM 4769, Enterococcus raffinosus CCM 4216, Lactobacillus rhamnosus CCM 1828, Paenibacillus larvae CCM 4483 and Staphylococcus epidermidis CCM 4418. The bacterial strains were purchased from the Czech Collection of Microorganisms (CCM). The microorganisms were grown overnight at 37 °C in Mueller-Hinton Broth (Oxoid, England) at pH 7.4.

Antibacterial activity with disc diffusion method

Antimicrobial activity of each plant extract was determined using a disc diffusion method. Briefly, 100 µl of the test bacteria were grown in 10 ml of fresh media until they reached a count of approximately 10^7 cells.ml^-1. One hundred microlitres of the microbial suspension was spread onto Mueller Hinton agar plates. The extracts were tested using 6 mm sterilized filter paper discs. The diameters of the inhibition zones were measured in millimeters. All measurements were to the closest whole millimeter. Each antimicrobial assay was performed in at least triplicate. Filter discs impregnated with 10 µl of distilled water were used as a negative control.

Minimum inhibitory concentration MIC

Minimum inhibitory concentrations (MICs) determination was performed by a serial dilution technique, using 96-well microtitre plates. The bacterial inoculum applied contained approximately 1.0 x 10^7 cells in a final volume of 100 µl.well^-1. The pure plant material tested were dissolved in DMSO (512 to 1 µg.ml^-1) and added to broth medium with bacterial inocula. The microplates were incubated for 16 – 20 hours at 37 °C. The lowest concentrations without visible growth determined as different between start concentration and final concentration of solution by ELISA Reader (Biotek ELx808iU) were defined as concentrations which completely inhibited bacterial growth (MICs). The first row on 96-well microtitrate plate was control of sterility and final row was control of growth without pure compound of plant material.

Statistical analysis

From obtained measured absorbances before and after this experiment we changed differences in absorbance between measuring to set of binary values. These values were assigned exact concentrations. For this experiment we created followed formula: if absorbance values were a lower as 0.05 than numbers for binary system were 1 (inhibitory effect), if absorbance values were a higher as 0.05 than numbers for binary system were 0 (no effect or stimulant effect). For this statistical evaluation Probit analysis in Statgraphich software was used.

RESULTS AND DISCUSSION

Natural products are considered an important source of new antibacterial agents. Medicinal plants continue to be used worldwide for the treatment of various diseases and have a great potential for providing novel drug leads with novel mechanism of action (Singh et al., 2012). The inhibition zone diameter of selected bacteria compared with E. arvense illustrated (tab. 2) that this extract had the highest activity against S. epidermidis only. Whereas, the maximum diameter of inhibition growth U. dioica was related against P. aeruginosa and slightly against E. coli, B. thermosphaeta, L. rhamnosus and P. larvae. In this study of Gülçin et al. (2004), nine different microbial and one yeast species were used to screen the possible antimicrobial activity of water extract of U. dioica. Water extract of U. dioica exhibited antimicrobial activity against all tested microorganisms. Of the species used, Staphylococcus aureus is one of the most common Gram-positive bacteria causing food poisoning. Its source is not the food itself, but the humans who contaminate food after it has been processed. Escherichia coli, belonging to the normal flora of humans, is a Gram-negative bacterium. However, an enterohemorrhagic strain of Escherichia coli has caused serious cases of food poisoning and preservatives to eliminate its growth are needed.

The results of Chahardehi et al., (2012) revealed that ethyl acetate, hexane and chloroform extracts showed higher antimicrobial activity than the other crude extracts, where the ethyl acetate extract showed highest inhibition against B. cereus, metillicillin resistant Staphylococcus aureus and Vibrio paraohaemolyticus. Terpenes and phenols of U. dioica are one of the major groups associated with the inhibition of microbial infections and cancer (Dar et al., 2012). U. dioica is a rich source of phytochemicals such as phenolic compounds and minerals which can be used as a potential source of useful drugs (Ahmed et al., 2012).

Table 1 Detail information about plants and plant extracts

<table>
<thead>
<tr>
<th>Orig. Latin title</th>
<th>Plant parts</th>
<th>Yield</th>
<th>Area</th>
<th>Dissolving time</th>
<th>Extracted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urtica dioica</td>
<td>leaf + stem</td>
<td>2007</td>
<td>Nitra</td>
<td>2 weeks at room temperature</td>
<td>Vacuum evaporator at room temperature at ~800 mbar</td>
</tr>
<tr>
<td>Equisetum arvense</td>
<td>leaf + stem</td>
<td>392.5</td>
<td>Nitra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Antibacterial activity of medicinal plants against bacteria in mm

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Medicinal plant extract</th>
<th>Mean (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli CCM 3988</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>5.00</td>
</tr>
<tr>
<td>P. aeruginosa CCM 1960</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>8.00</td>
</tr>
<tr>
<td>Serratia rubidae CCM 4684</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>0</td>
</tr>
<tr>
<td>Listeria ivanovii CCM 5884</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>0</td>
</tr>
<tr>
<td>Listeria innocua CCM 4030</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>0</td>
</tr>
<tr>
<td>E. raffinosus CCM 4216</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>0</td>
</tr>
<tr>
<td>B. thermosphaeta CCM 4769</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>2.6</td>
</tr>
<tr>
<td>S. epidermidis CCM 4418</td>
<td>Equisetum arvense</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>0</td>
</tr>
<tr>
<td>L. rhamnosus CCM 1828</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>2.3</td>
</tr>
<tr>
<td>P. larvae CCM 4483</td>
<td>Equisetum arvense</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
<td>4.6</td>
</tr>
</tbody>
</table>

The determination of the MIC by means of the microbroth dilution method (Table 3) showed that plant extract tested exhibit an antimicrobial effect against some of the ten tested microorganisms. The results of the bioassays showed that extract exhibited moderate to appreciable antibacterial activities against all bacteria. However, this activity varies with the kind of bacteria. The best antimicrobial activity at both medicinal plants were found against four gramnegative bacteria.
The essential oil of *Equisetum arvense* L. in study of RaduIović et al. (2006) was shown to possess a broad spectrum of strong antimicrobial activity against all tested strains. The diameters of growth inhibition zones ranged from 23 to 37 mm (including the diameter of the disk, 12.7 mm) with the highest inhibition zones observed against Gram-negative *S. enteritidis* (35 mm) and *K. pneumoniae* (37 mm). Significant reductions in bacterial growth were obtained with medicinally important pathogens such as *S. aureus* (28 mm). The activity was greater or similar to conventional antibiotics even in the case of *C. albicans* and the fungal filamentous organism *A. niger*. In the present study, the Gramnegative bacteria *K. pneumoniae*, *P. aeruginosa* and *S. enteritidis* were more susceptible than the Grampositive *S. aureus* except for the strains of *E. coli* (Gramnegative) that were the most resistant of the tested bacteria. It has been frequently reported that Gramnegative bacteria are more resistant to the inhibitory effects of essential oils (Smith-Palmer et al., 1998), and this was attributed to the microbial cell impermeability due to the presence of certain lipopolysaccharides in the cell walls. All tested microorganisms were completely non-susceptible to control disks imbued with ether. The antimicrobial nature of the *E. arvense* essential oil can be attributed to the presence of various substances, mainly the phenolic monoterpene thymol (Teppe et al., 2004; Pattnaik et al., 1997). In addition the combination of thymol and 1,8-cineole may have resulted in a significant synergistic antifungal effect as previously published (Pina-Vaz et al., 2004). Linalool has also been reported as having antibacterial (Onawumi et al., 1984) and antifungal activity (Reuveni et al., 1984). β-Ionone was shown to possess antimicrobial effect on the strains of *S. aureus* while in the same study β-caryophyllene had no pronounced activity (Kubo et al., 1992). Very similar patterns of activity of α- and β-ionones compared with the activity of *E. arvense* oil against *P. aeruginosa*, *E. coli*, *S. aureus* and *C. albicans* were observed previously and their activity correlated with their solubility in water, due to the great importance of the diffusion ability of the compounds in the disk diffusion assay (Griffin et al., 1999). Trans-Phytol was the principal active component responsible for the anticymbacterial activity of the methanol extract of *Leucas volkensii* (Rajah et al., 1998). The essential oil of *E. arvense* showed strong antimicrobial activity in vitro and may, despite the small yield, contribute to the medicinal properties of the plant.

CONCLUSION

In conclusion, we can state that the most antimicrobial activity showed methanolic plant extract of *E. arvense* against *E. spinulosus* with disc diffusion method and with microbrot dilution method against *S. rubidus* and plant extract *Urtica dioica* with disc diffusion method against *P. aeruginosa* and with microbrot dilution method against *S. rubidus* and *E. coli*.

Acknowledgments: The Paper was supported by the project: Development of International Cooperation for the Transfer and Implementation of Research and Development in Educational Programs conducted by the Operational Program: Education, ITMS code: 2622020525, by grant of KEGA 011SPU-4/2012, VEGA 1/0129/13, APVV grant 0304-12 and Food and Agriculture COST Action FA1202.

REFERENCES

and their major compounds. Journal of European Academy of Dermatology and Venereology, 18(1), 73-78.

