THE MALT EXTRACT, RELATIVE EXTRACT AND DIASTATIC POWER AS A VARIETAL CHARACTERISTIC OF MALTING BARLEY

Štefan Dráb*1, Helena Frančíková2, František Psota2, Miriam Solgajová1, Eva Ivanisová1, Žigmund Tóth1, Karolina Mocko1, Hana Balková2

Address(es): Ing. Štefan Dráb, PhD.
1Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Storing and Processing of Plant Products, Tr. A. Hlinku 2, 949 76 Nitra, Slovak republic, phone number: +421376415815.
2Research Institute of Brewing and Malting, Plc, Malting Institute, Mostecká 7, 614 00 Brno, Czech republic.

*Corresponding author: stefan.drab@unag.sk

ARTICLE INFO
Received 1. 10. 2013
Revised 29. 10. 2013
Accepted 8. 1. 2014
Published 1. 2. 2014

ABSTRACT

Malting quality of barley depends on genetic and agro-ecological factors. Chemical composition of malting barley and its technological parameters are very important for malting and brewing, due to this fact the quality of barley must be strictly evaluated. The aim of this work was to evaluate the influence of variety, locality and year of production on the 5 technological parameters of malt: extract, relative extract at 45 °C, Kolbach index, diastatic power and friability. It was found out that the barley variety significantly influenced the following parameters: extract, relative extract and diastatic power. The growing locality weakly influenced qualitative parameters i.e. Kolbach index and relative extract at 45°C. The study confirmed the most significant impact of the year on the Kolbach index and friability.

Keywords: malting barley, variety, locality, year, malt parameters

INTRODUCTION

Barley is one of the most ubiquitous cereals worldwide. Russia, Canada and European countries are the biggest producers of barley. It prospers particularly in moderate climates on fertile and profoundly loamy soils with good water diffusion. Of all cultivated grain varieties, barley exhibits the best adaptability and also grows well in cold, rainy climate zones with long daylight periods as at the edge of hot, dry steppes (Meusdoerffer and Zarnkow, 2009). There were produced 134 million tons of barley in 2011 worldwide (http://faostat.fao.org). About two thirds of barley yield is used as feed, one third for malting and about 2% for human consumption (Newman and Newman, 2006). Although, in recent years, there has been a growing interest in incorporating barley into the human diet, the barley production on the technological parameters of malt: extract, relative extract at 45 °C, Kolbach index, diastatic power and friability. It was found out that the barley variety significantly influenced the following parameters: extract, relative extract and diastatic power. The growing locality weakly influenced qualitative parameters i.e. Kolbach index and relative extract at 45°C. The study confirmed the most significant impact of the year on the Kolbach index and friability.

Malting quality of barley depends on genetic and agro-ecological factors. Chemical composition of malting barley and its technological parameters are very important for malting and brewing, due to this fact the quality of barley must be strictly evaluated. The aim of this work was to evaluate the influence of variety, locality and year of production on the 5 technological parameters of malt: extract, relative extract at 45 °C, Kolbach index, diastatic power and friability. It was found out that the barley variety significantly influenced the following parameters: extract, relative extract and diastatic power. The growing locality weakly influenced qualitative parameters i.e. Kolbach index and relative extract at 45°C. The study confirmed the most significant impact of the year on the Kolbach index and friability.
average annual temperature 9.3 °C and the average rainfall of 531 mm. Potato production area is located in eastern Slovakia, at an elevation of 625 m. a.s.l., with 30-year average annual temperature 6.2 °C and the average rainfall of 612 mm.

Table 1 List of the studied varieties

<table>
<thead>
<tr>
<th>Variety / Code</th>
<th>Pedigree</th>
<th>Maintainer / Agent in the SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitran SK 5138</td>
<td>KOMPAKT x FORUM</td>
<td>HORDEUM, s. r. o.</td>
</tr>
<tr>
<td>Xanadu NORD 00/2310</td>
<td>VISKOSA x SCARLETT</td>
<td>NORDSAAT Saatzuchtgesellschaft</td>
</tr>
<tr>
<td>Sigurnum HE 575</td>
<td>HE 8621 C x SEBASTIAN</td>
<td>Limagrain Central Europe Cereals, s.r.o</td>
</tr>
<tr>
<td>IS Carmenta SOH 811 LS</td>
<td>BODEGA x KOMPAKT</td>
<td>ISTROPOL SOLARY</td>
</tr>
<tr>
<td>IS Castor SOH 812 LS</td>
<td>BOJOX x BETTY</td>
<td>ISTROPOL SOLARY</td>
</tr>
</tbody>
</table>

Micromalting sample

Before analyzing the samples were prepared by malting process. Laboratory malting of samples was carried out based on the standard procedure used in RIBM, which is almost identical to the MEBAK methodology (2011). Malting parameters were as follows:

- Steeping: 1st day: – 5 hours, 2nd day: – 4 hours, 3rd day: – spraying or steeping to water content in grain 45.5%. Water and air temperature during the air rests was 14.5 °C.
- Germination: total germination time was 144 hours at 14.5 °C.
- Kilning: one-floor electrically heated kiln. Total kilning time was 22 hours. Pre-kilning was carried out at 55 °C and at kilning temperature of 80 °C for 4 hours.

Analyzed parameters of malt

Samples prepared by malting process were subjected to the following analyses:

- Extract (Hot Water Extract) was determined following a small-scale infusion mashing and filtration between EBC Method 4.5.1 (EBC, 2010).
- Relative extract at 45 °C is the value calculated from the quantity of materials converted by enzymes to soluble form at 45 °C in proportion to the malt extract. This parameter was determined according to the Brewing and Malting Analytics (Basařová et al., 1992).
- Kolbach index, the ratio between the total nitrogen content in malt and the content of soluble nitrogen in congress wort was determined by EBC Method 4.9.3 (EBC, 2010). Diastatic power was determined by the method EBC 4.12 (EBC, 2010).
- Malt friability was determined by the Method 4.15 EBC (EBC, 2010).

Statistical evaluation

The obtained data were evaluated by analysis of variance followed by the Tukey HSD test. As a source of variability were observed varieties, growing areas and experimental years. Homogeneous groups of the factors are designated by the letters a, b, c. The statistical software STATISTICA 10 (StatSoft, Inc. 2011) was used.

RESULTS AND DISCUSSION

Extract

Malt extract is perhaps the most important quality parameter for maltsters and brewers when selecting or purchasing malting barley. The amount of extract a malting cultivar can produce in the brewhouse will always be of crucial economic importance, as it determines the amount of beer that can be produced. As a consequence, malt extract is also a major focus of breeding programs. Breeders, maltsters, and brewers are all striving to achieve high extract (Li et al., 2008). According to Fox et al. (2003) the quality of the extract is influenced by several factors. The first is environmental, such as growing conditions, temperature, fertilizer, available nitrogen, or moisture. These factors do not impact on extract directly but rather affect traits that influence extract particularly protein and starch levels and composition. The second is several genetic biochemical components that influence the final level of extract. These include 2- or 6-row types, husk thickness, grain size, protein, starch, non-starch polysaccharides and enzyme production. The other important factors that influence extract are the malting process and mashing conditions (pH, temperature, mash time, grit/particle size etc).

Relative extract at 45 °C

The relative extract (RE) at 45 °C is used at present to assess the quality of malt (Chejn and Zajt, 2007). Despite the fact that some works noted on its low environmental influence on the extract content. The Nitran variety with an average extract 82.8% is highly significantly differed (P <0.01) from the IS Castor variety with the highest average extract 83.9%. As can be seen in figure 1, in years 2009, 2010 and 2011 average values were on similar level and the influence of year on the extract content was not confirmed.

Kaczmarek et al. (1999) reported that the extract had mainly genetic effect, but it was also influenced by the crop and environmental conditions. The results of our work confirm the significant influence of the variety on the extract value. Also, Eagles et al. (1995) in their work confirm the high significant effect (P <0.01) of the variety on the extract content. The Nitran variety with an average extract 82.8% is highly significantly differed (P <0.01) from the IS Castor variety with the highest average extract 83.9%. As can be seen in figure 1, in years 2009, 2010 and 2011 average values were on similar level and the influence of year on the extract content was not confirmed.

Kolbach index

The Kolbach index is an important indicator of protein degradation. According to Bamforth and Barclay (1993), the KI values of malt used in the brewing industry should be in the range of 39-44%. Tested varieties had high values of the KI, ranging from 48.5% (the IS Castor) to 50.7% (the IS Carmenta) demonstrating a high level of proteolytic modification.
Based on our results (Fig. 3) we can conclude that between varieties was no significant difference. Wang et al. (2007) reported that the Kolbach index is associated with a growing area. Kaczmarek et al. (1999) in their study found a high significant (P ≤ 0.01) influence of the environment on this parameter. The results of the analysis agree with the arguments of these authors, because the locality had a highly significant influence on the values of this parameter. A highly significant difference (P < 0.01) was confirmed between the Corn area containing the lowest average value of the KI (47.4 %) and the sugar beet area with the highest average value of the KI (51.7 %) (Fig. 3). From all tested effects the year had a highly significant influence on the Kolbach index. Our results agree with findings of Molina-Canø et al. (1997), who observed a significant (P < 0.05) influence of climatic conditions of year on the KI.

Diastatic power

Kreuz (2009) reported that a good malt should reach values of the DP above 200 j WK. Diastatic power values of tested samples as a parameter pointing to the activity of amylolytic enzymes ranged from 270 j WK to 420 j WK (Fig. 4).

Eagles et al. (1995) describe that the variety has a significant effect on the DP. This statement is confirmed by the results of our analysis, in which a variety as the only character of variability significantly (P <0.01) participated in the creation of this parameter. Three homogeneous groups with a highly significant different average values were created among the monitored varieties (Fig. 4). The practical results of other authors (Gibson and Solah, 1995; Arends et al., 1995) associate variability of the diastatic power with the effect of the locality. Our results did not confirmed the influence of the locality. We can also exclude the influence of year on monitored parameter.

Friability

Friability was used to determine the modification of cell wall of malt grains. Tested genotypes were in the range of 90-92%. The lowest average value was determined for the IS Castor variety, the highest for the Signum variety (Fig. 5).

The results of our work did not confirm the influence of the variety on friability. The average friability values of tested varieties ranged about the same level and statistical analysis did not record significant influence on this parameter. Despite this finding the work of some authors point to the influence of genotype on the variability of friability. Gianinetti et al. (2005) state that friability is a highly heritable trait. Edney et al. (2012) point to a highly significant influence of the variety on the level of this parameter. In addition to the genetic influence they determined a highly significant impact of the environment (P < 0.01). The average friability values were lower in corn area, but statistic comparison did not confirm significant differences between the tested areas. The year had a highly significant influence (P < 0.01) on the cytolitic modification. Among the monitored years, 2011 was characterized by the lowest value of this parameter (88.4 %). A highly significant difference was confirmed between 2009 and 2011.

CONCLUSION

In the present study we found out that among five analyzed parameters of malt 3 were significantly affected by the variety, namely: extract, the relative extract at 45 ° C and the diastatic power. The diastatic power was shown as the most important varietal characteristic parameter, in which the influence of year and locality appeared to be negligible. The Kolbach index and friability were strongly affected by the year.

Acknowledgments: This work was co-funded by European Community under project no 2622020180: Building Research Centre „AgroBioTech”.

REFERENCES

