IMPACT OF SELECTED PARAMETERS ON MILK PRODUCTION IN TSIGAI BREED

Martina Vršková*1, Vladimír Tancín1, Katarína Kirchnerová1, Petr Sláma3

Address(es): Ing. Martina Vršková, Ph.D.
1National Agricultural and Food Centre, RIAP Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic, 00421 903 546 401.
2Slovak University of Agriculture in Nitra, Tieda A. Hlinka 2, 949 76 Nitra, Slovak Republic.
3Mendel University Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

*Corresponding author: vrskova@vuzv.sk
doi: 10.15414/jmbfs.2015.4.special3.185-187

ABSTRACT

The objective of our research was to study selected parameters which affect milk production. The study was performed in the selected herd of purebred Tsigai ewes (231 animals). Regular milk yield recording was performed during the morning milking in around the middle of April, May and June. Milk samples were analyzed for basic milk composition (fat, protein and lactose) and somatic cells count. According to animals, the dairy ewes were divided into the four groups on the basis of individual SCC (G1= SCC <100×103 cells.ml−1, G2= SCC between 100–400×103 cells.ml−1, G3= SCC between 400–700×103 cells.ml−1, G4= SCC >700×103 cells.ml−1) to study the frequency of distribution of animals in selected group of ewes throughout experimental period. We have not created group with SCC between 700–1000×103 cells.ml−1 because there would not be sufficient number of animals. The average daily milk production in selected herd of Tsigai was 614.51 ml, equivalent to 95.65 liters for a normalized lactation. We reached the highest daily milk production in April 779 ml and the highest content of fat and protein in May, while milk production was lower by only 30 ml. We conclude that the protein content of milk was over 6% within each division, whether by order of lactation, season or somatic cells count, except of June (5.98%). We found a tendency to lower milk production by a higher SCC. With the increasing SCC decreased lactose content from 4.66% (G1) to 4.27% (G4) and there is a need for performing bacteriological examination in milk.

Keywords: Sheep, milk yield, milk composition, SCC

INTRODUCTION

Rearing small ruminants in Slovakia has a rich history. Nevertheless, the sector has always been marginal to the livestock sector. Sheep and goat production function in addition to the much greater importance of non- productive, as a factor positively affecting the environment and cultural character of rural, which is currently within the purview of sustainable agriculture and rural development particularly important (Margetín et al., 2013a). Ewe’s milk is mainly used for making the cheese in Slovakia. Although the SCC is not considered as factor influencing the price of milk, it is also an important factor determining its yield and quality of the final product (Oravcová et al., 2007; Margetín et al., 2013b).

Selection for milk yield, milk components and health of ewe’s udder may have an impact on the further improvement of Slovakian breeds of local origin traditionally, i.e. Tsigai and Improved Valachian. In dairy cattle is standard practice detection of subclinical mastitis by milk somatic cell counts (SCC). In dairy ewe’s instantaneous physiological and pathological thresholds of SCC ranging from (0.25 to 1.0) ×104 cells/ml, have been available since the early 1990s (Ariazabal et al., 2002). In sheep and goats, mastitis episodes are the main reason for culling because of sanitary problems, which occur mainly during the first 2–3 months of lactation (Bergonier et al., 2003; Leitner et al., 2008). Before the milking of sheep rarely used suitable method for the detection of subclinical mastitis (NK test, California Mastitis Test - CMT, Whiteside Test - WST), although their use is generally recommended (Bergonier et al., 2003; Śpánik et al., 1996).

Berthelot et al. (2006) recommends that a decision rule proposes to consider an udder as healthy if every SCC are lower than 0.500×103 cells/ml and infected if at least two individual SCC are higher than 1 or 1.2 million cells/ml. Arias et al. (2012) found by manchea sheep that milk yield was always higher for ewe with SCC ≤ 300 × 103 cells/ml than for those with SCC > 300 × 103 cells/ml. Subclinical mastitis should be always suspected as one of the primary causes in cases of decreased milk production in dairy herds (Fráňková et al., 2014). In fact, coagulase-negative staphylococci, which are the most common aetiological agents of subclinical mastitis (Contreras et al., 2007), are also frequent inhabitants of the skin of the udder. Most sheep mastitis occurs before the end of lactation (at the beginning of dry period) and also during the rearing lambs (Albenzio et al., 2003; Bergonier et al., 2003; Contreras et al., 2007). The objective of our research was to study selected parameters which affect milk production in Tsigai breed in the year 2013.

MATERIAL AND METHODS

The study was performed in the selected herd of purebred Tsigai ewes (231 animals). The ewes were machine milked twice daily after weaning of their lambs at the beginning of April. Regular milk yield recording was performed during the morning milking in around the middle of April, May and June. Individual milk samples were obtained from whole milk collection as an average sample. Milk samples from each udder were transported to the certificated Central laboratory of the Breeding Services of the Slovak Republic (Plemenné služby s.p. Bratislava) for milk analysis. Milk samples were analyzed for basic milk composition (fat, protein and lactose) and somatic cells count (SCC). Basic milk composition was done by MilkoScan FT120 (Foss, Hillerod, Denmark) and somatic cells count were determined using a Fossomatic 90 instrument (Foss Electric, Hillerod, Denmark) after heat treatment at 40°C for 15 min. According to animals, the dairy ewes were divided into the four groups on the basis of individual SCC (G1= SCC <100×103 cells.ml−1, G2= SCC between 100–400×103 cells.ml−1, G3= SCC between 400–700×103 cells.ml−1, G4= SCC >700×103 cells.ml−1) to study the frequency of distribution of animals in selected group of ewes throughout experimental period. We have not created group with SCC between 700–1000×103 cells.ml−1 because there would not be sufficient number of animals. The average daily milk production in April 779 ml and the highest content of fat and protein in May, while milk production was lower by only 30 ml. We conclude that the protein content of milk was over 6% within each division, whether by order of lactation, season or somatic cells count, except of June (5.98%). We found a tendency to lower milk production by a higher SCC. With the increasing SCC decreased lactose content from 4.66% (G1) to 4.27% (G4) and there is a need for performing bacteriological examination in milk.
RESULTS AND DISCUSSION

The average daily milk production 614.51 ml in selected herd of Tsigai was observed, which is equivalent to 95.65 liters for a normalized lactation. The milk yield is by 20% lower than the breed standard specifies of Tsigai breed (ZCHOK, 2014). Dairy ewe’s at 1st lactation achieved 654.84 ml of average daily milk production and the second one 574.18 ml. Although, the sheep of the 2nd lactation had lower milk yield by 12%, sheep reached a higher fat and protein (tab. 1). The lower fat content, but higher protein content compared to Oravcová et al. (2007) was observed. From the available publications Špánik et al. (1996), Margetin. et al. (1998) and Oravcová et al. (2005), which researched the composition of Tsigai milk rearing in Slovakia, a positive trend of increasing milk production was observed. Comparison with our results the highest daily milk production in April 779 ml was reached (tab. 2). Furthermore, the highest content of fat and protein in the month of May was observed, when the average daily milk production was lower (by 30 ml) compared to the April. It was found that the protein content of milk was over 6% within each division.

In Table 3, the animals were divided into groups according to SCC. For individual animals, the best approach has been provided by Špánik et al. (2006). The mentioned author suggested that values <0.5 × 10³ cells.ml⁻¹ indicate a healthy mammary gland and values >1.0 × 10³ cells.ml⁻¹ indicate a mammary gland with clinical or subclinical mastitis. Furthermore, here is no need to perform a simultaneous bacteriological examination of milk samples to confirm the problem. Values between 0.5 × 10³ and 1.0 × 10³ cells ml⁻¹, according to those authors, indicate ‘suspected disease’, hence there is a need for performing bacteriological examination in milk.

CONCLUSION

From this herd of purebred Tsigai was 78% of ewes below SCC 400×10³ cells.ml⁻¹. This SCC indicated good health status of experimental ewes, at which 62% sheep were at the second lactation. Although the average daily milk production was 614.51 ml, equivalent to 95.65 l for a normalized lactation, reached above the average content of protein (above 6.0%). We found a tendency to lower milk production by a higher SCC. With the increasing SCC decreased lactose content from 4.66% (G1) to 4.27% (G4). Reduced lactose content refers to the occurrence of mastitis and there is a need for performing bacteriological examination in milk. However more detail study is needed to see relationship between high SCC and presence of microorganisms to better understanding the reasons the physiological and pathological SCC in the udder.

Acknowledgments: This article was written during realization of the project “MLIEKO č. 26220220196” supported by the Operational Programme Research and Development funded from the European Regional Development Fund.
REFERENCES


ZCHOK. 2014. Šľachtiteľský program plemena cigája. www.zchok.sk