CLONING AND EXPRESSION MOST EXPECTED ANTIGENIC FRAGMENT OF BETA-TOXIN GENE FROM CLOSTRIDIUM PERFRINGENS TYPE B

Maryam Gholami1, Mohsen Fathi Najafi*2, Mohammad Rabbani Khorasgani 3, Behjat Majidi2

Address(es):
1Department of Biotechnology, Faculty of advanced science and technologies, University of Isfahan, Hezarjarib St, 81746-73441, Isfahan, Iran.
2Department of Veterinary Research and Biotechnology, Razi Vaccine and Serum Research Institute, Ahmadabad St, Mashhad, Iran.
3Department of Biology, Faculty of Sciences, University of Isfahan, Hezarjarib St, 81746-73441, Isfahan, Iran.

*Corresponding author: m.najafi@mirazi.ac.ir
doi: 10.15414/jmbfs.2016.5.5.491-494

ARTICLE INFO
Received 26. 4. 2013
Revised 29. 5. 2015
Accepted 6. 1. 2016
Published 1. 4. 2016

ABSTRACT
Cloning and expression of most expected antigenic fragment of Beta-toxin gene from Clostridium perfringens type B

INTRODUCTION
Clostridia are ubiquitous and are commonly found in the environment, soil, decaying organic matter and a member of the gut flora in humans and animals (Cato et al., 1986). Clostridium perfringens is an anaerobic, Gram-positive, rod-shaped, spore-forming bacterium that is one of the most important pathogen of humans and livestock (Michard et al., 2009; Rood and Cole, 1991). C. perfringens produces numerous toxins which are responsible for severe diseases including intestinal or foodborne in human and animals. This microorganism is classified into five toxintype (A, B, C, D and E) based on their ability to cause necrotic enteritis in human and domestic animal (Nagahama et al., 2003; Springer and Selbitz, 1999).

CBP is a lethal pathogenic factor of C. perfringens type B which aid in the lysis of HL-60 cells by forming cation-selective pores in the cell membrane (Nagahama et al., 2003). This function is necessary for both necrotizing enteritis and lethal enterotoxemia caused by C. perfringens (Nagahama et al., 2008; Sayeed et al., 2008). The gene for the BT has 1209 base pair with 336 amin acids in BT protein. The secreted toxin has similarities (based on 17% to 28% identity) to other toxins that are known to form pores in the plasma membranes of eukaryotic cells (Hunter et al., 1993). Therefore, the production of toxins in heterologous expression systems is viable alternative. The efficiency of vaccines based C. perfringens recombinant Beta-toxin has been reported. The importance of the Beta-toxin in human and animal diseases has been demonstrated by immunization studies with Beta toxin. In one study α-β fusion gene from C. perfringens type C was cloned and expressed in E. Coli (Bai et al., 2006). In this study the expressed α-β fusion protein can be used as the immunogens peptide for immunization. They constructed a recombinant epsilon-beta fusion protein for applying in vaccine production (Langroudi et al., 2011). In another study, αβ2β1 trivalent fusion-toxin (CPAB2B1) displayed increased immunogenicity relative to CPA and CPB2B1 alone. In other work, a vaccine based on Beta toxoid of C. perfringens type C produced and evaluated in E. Coli. The non-toxic recombinant Beta toxoid (rβT) was innocuous for mice and induced beta antitoxin in rabbits (Milach et al., 2012).

The aim of this work is production a recombinant fragment of Beta-Toxin (r-βT) from C. perfringens type B in E. coli. Expected to use this recombinant protein for production of antibody against Beta-toxin of C. Perfringenes type B and futher applications.

MATERIAL AND METHODS
DNA extraction
Cloning C. perfringens type B strain ATCC3626 prepared from Razi vaccine and serum research Institute. The cell was grown for 18 to 20 h at 37 °C in TGY (2% Trypticase, 2% glucose, 0.5% yeast extract). Genomic DNA was extracted by standard method with phenol/chloroform/isooamyl alcohol method (Sambrook et al., 1989).

Primer designing
Since the aim of producing universal antibody for all antigenic components of Beta toxin C. perfringens therefore fragments of cbp were aligned and conserved gene sequences were selected. Multiple sequence alignments of 11 gene sequence of C. perfringens type B was performed using the CLUSTAL W2 program (include: B-CPB240, B-CPB213, B-CPB228, B-CPB236, B-CPB220, B-CPB214, B-B, B-cpb, B-C-b, B-CWB-CN-228, B-CN301), we designed universal primers from conserved regions. Different primers were designed in various location of C.perfringens cbp gene (GenBank Accession No. X83275.1) according to the secondary structure of protein (Table 1). Secondary structure of beta protein (α-helix and β-sheet regions) was obtained based on the amino acid sequence of Beta toxin using PSIPRED Bioinformatics, then primers were designed according to different situations and out of range of the α-helix and β-sheet. Peptides outside the region of helix and loop regions are antigenic peptides. For confirmation of primer designing Immune Epitope Database (IEDB) was used.
Table 1 Six oligonucleotide primers for PCR-synthesizing cpb gene.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
<th>Sequence size</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1cbp</td>
<td>aag gag caa tgt tca ttt aac tta aca</td>
<td>618 bp</td>
<td>1-618</td>
</tr>
<tr>
<td>R1cbp</td>
<td>tgt aga tga ttc agc atc ttc ggt</td>
<td>582 bp</td>
<td>399-981</td>
</tr>
<tr>
<td>F2cbp</td>
<td>act aat tct act gca att aat ttt ccg</td>
<td>474 bp</td>
<td>591-1065</td>
</tr>
<tr>
<td>R2cbp</td>
<td>gga ata gag ttc tct tca tct aca</td>
<td>474 bp</td>
<td>591-1065</td>
</tr>
<tr>
<td>F3cbp</td>
<td>aag gag tgc ttt gtt agt aag cca</td>
<td>474 bp</td>
<td>591-1065</td>
</tr>
<tr>
<td>R3cbp</td>
<td>aat aag tgg ttt gtt aac cca</td>
<td>474 bp</td>
<td>591-1065</td>
</tr>
</tbody>
</table>

Polymerase chain reaction (PCR)

The PCR was carried out in a final volume of 50 µl containing 1 µg template DNA samples which were extracted from the bacterial strains. The target fragment was amplified using PCR Master Mix (Bioneer). A total of 35 cycles was performed under the following conditions: 94ºC for 5 min, and 1 cycles at 94ºC for 60 sec, 56ºC for 60 sec, 72ºC for 60 sec, then 1 cycles at 94ºC for 60 sec, 54ºC for 60 sec, 72ºC for 60 sec and then 35 cycles at 94ºC for 45 sec, 52ºC for 45 sec, 72ºC for 45 sec with a final extension at 72ºC for 10 min. PCR products were detected by 1.0% agarose gel electrophoresis and photographed.

“Cloning and expression r-f-BT protein”

The PCR product of Beta-toxin gene (cbp) with one region of cbp with high antigenicity (based on antigen prediction bioinformatics tools) was selected and extracted from the gel using the DNA recovery kit (Bioneer). The extracted fragment was ligated into vector PTZ57RT (InsTAclone™ PCR Cloning Kit) according to manufacturers protocol. The recombinant plasmid was transformed into competent E. coli DH5α and selected on LB agar plates containing X-gal/IPTG and ampicillin. The white clones with positive plasmid were selected and controlled by PCR using its specific primers and M13 primers. Plasmid digestion was performed by EcoR1 and Sal1 restriction endonuclease according to Fermentas protocol. After agarose electrophoresis, the EcoR1-cbp.f-SalI was purified and subcloned into pET21a (+) (Invitrogen) to generate the vector pET-21a-cbp.f. This transformant was picked and used to inoculate LB medium. The recombinant vector pET-21a-cbp.f was transformed into E. coli BL21(DE3) and selected by agar plate containing ampicillin and confirmed by restriction enzyme mapping. BL21 cells transformed with the plasmids described above were grown in LB medium with 100 µg/mL ampicillin at 37ºC to OD600 = 0.4–0.6. At this time, the expression of the protein was induced by adding 0.1 mM Isopropylthio-beta-galactoside (IPTG). The r-f-BT protein was purified (by instruction in www.thermo.com/pierce) and examined with SDS-PAGE and western blotting.

RESULTS

The aim of this project is to provide certain fragments of the Beta-toxin with high antigenicity and under epitope-focusing. First primers were designed based on the secondary structure with PSIPRED tool (Figure 1), then the results predicted antigenic regions of Beta-toxin by semi-empirical method showed that Beta-toxin has 9 antigenic regions which is shown in table 2. Thus region between 399–981 bp which has more than 5 antigenic regions of overlap with other fragments (Figure 2). Therefore this region was selected and transformed.
Table 2 Predicted peptides of Beta-toxin by semi-empirical method

<table>
<thead>
<tr>
<th>No.</th>
<th>Start Position</th>
<th>End Position</th>
<th>Peptide</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>28</td>
<td>FISLVIYVSSLNLGCLLSPTLVLVYA</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>63</td>
<td>IISYQSVDS</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>114</td>
<td>EDVIKKYNLHDV</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>132</td>
<td>INPFVYRYSILN</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>138</td>
<td>145</td>
<td>NVKIVDSD</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>188</td>
<td>196</td>
<td>IKEYQVDFS</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>206</td>
<td>213</td>
<td>NMVYVTLA</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>303</td>
<td>314</td>
<td>VQGVYRSRLFDT</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>317</td>
<td>324</td>
<td>VDHSHTF</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 2 Semi-empirical method for prediction of antigenic regions of Beta-toxin C. perfringens.

“Gene cloning and expression of r-f-BT gene” in E. coli BL21 (DE3)

The r-f-BT gene from C. perfringens type B strain ATCC3626 was isolated from genomic DNA-extracted template by PCR amplification. The reaction yielded more products. Electrophoresis of PCR product confirmed the length of PCR fragment, which is shown in Figure 3A. One of the fragments of Beta-toxin approximately 582 bp with high antigenicity was ligated to the cloning vector pTZ5R/T with T4 DNA ligase. The cloning vector containing the r-f-BT gene was introduced into competent E. coli DE5r cells by CaCl2 transformation. Transformed E. coli were grown at 37°C in medium containing X-gal/IPTG and ampicillin. The positive plasmids were identified via sequential digestion with semi-β gene was amplified by PCR in E. coli BL21 (DE3) star extract (negative control). Lane 3: r-f-BT protein 23 kDa purified from E. coli inclusion bodies. Lane 4: Supernatant from soluble fraction of recombinant E. coli. Lane 5: Fermetas unstained protein marker. B. The results of dot blot analysis using native Beta-toxin antibodies. Lane 1: r-f-BT Protein, Lane 2: BT C. perfringens (positive control), Lane 3: negative control.

DISCUSSION

Beta-toxin is one of the lethal toxins produced by C. perfringens type B and C strains (Hunter et al., 1993). Beta-toxin of C. perfringens (CBP) type B is caused to the principal disease such as lamb dysentery in Great Britain and South Africa (Nillo, 1980). Moreover, the toxoid vaccines majority of the commercial vaccines containing C. perfringens types B and C antigens, used in domesticated did not induce the minimum titers of β antitoxin, they are required to be tested for safety, residual toxicity and potency (Milach et al., 2012; Tithball, 2009). Vaccine based on recombinant Beta toxin (rBT) produced and evaluated in Escherichia coli, the non-toxic rBT was innocuous for mice and induced β antitoxin in rabbits. In other study the Beta-toxin gene fused to the glutathione-S-transferase (GST) was cloned and expressed in E. coli. The purified fusion protein is not toxic in mice and raised rabbit antisera against it specifically neutralises the toxic effect BT of C. perfringens type C culture filtrate in mice. Accordingly, the recombinant toxin proteins instead of their native toxins, are promising alternatives to the control of diseases caused by Clostridium perfringens (Milach et al., 2012; Steinpörsdóttir et al., 2006). Other result suggested that recombinant toxoids are potential vaccine candidates against Clostridial toxins (Zeng et al., 2011). Due to the strong toxicity of Beta-toxin, we decided to evaluate a recombinant form of the toxin (rec-β) as a potential antigenic toxoid for production of a recombinant vaccine against C. perfringens in future studies, after immunogenicity assay. As regards, the technology of recombinant protein antigens for immunization goes to identification main epitopes of protein antigens. Therefore antibody production is more successful with segments which contain epitope-focused antigens. The aim of this project is cloning a small fragment of the Beta-toxin with high antigenicity and epitope-focusing. First we designed primers according to the sequence and secondary structure of proteins that after protein structures are preserved; Beta-toxin has been shown more β-sheet than α-helix by secondary structure prediction. According to previous research, most pores-forming protein toxins have extensive β-sheet in their structure which can create suitable antigenic effect (Parker and Fell, 2005). The variable regions were located in the external loop structures, while the predicted β-strands were formed by conserved sequences. The primers designing was done in external loop positions. Epitope analysis plays an important role in the development of effective vaccine and diagnostic tools for different infection. In one study using different bioinformatics tools, one of the B cell epitopes of epsilon toxin comprising the region (EtxI40-62) was identified. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens (Kaushik et al., 2013).

In the present study we describes the successful isolation and cloning f-BT gene from strain of C. perfringens. We constructed a r-f-BT protein from C. perfringens type B. Ultimately western blot of r-f-BT protein showed that the antibodies specifically recognize antigen which it is attached. In summary, our findings demonstrate that r-f-BT of C. perfringens was capable of reacting with native Beta-toxin antibodies. The recombinant toxins with epitope-focused also be used to produce monoclonal antibody for immunoaassay or possible therapy.

CONCLUSION

Figure 3 Agarose gel electrophoresis of r-f-β gene was amplified by PCR. A. Lane 1: DNA molecular marker (GeneRuler 100 bp Plus DNA Ladder 100 to 3000 bp), Lane 2: 582bp. In B, Lane 1: DNA molecular marker. lane 2: pTZ57CPBP/EcoR1 + Sal I Lane 3, 4: Colony PCR results with Primer F2R2 (582bp) and M13 universal primers (741bp). In C, Cloned fragment into PET21 (a+) was confirmed by specific Primer F2R2.

The recombinant plasmid pET-21a-cbp was transformed into E. coli BL21(DE3) and the recombinant strain BL21(DE3) was obtained. Then SDS-PAGE and Brown band at the position of the reaction in western blotting confirmed the successful cloning and expression. The r-f-BT protein was produced in E. coli with an apparent molecular weight of 23 kDa was observed (Figure 4).
Herein, we reported that a r-f-BT of *C. perfringens* type B has been cloned and expressed in E. coli BL21, the achievement of this study was the production of r-f-BT with high antigenicity. These recombinant toxin (r-f-BT) proteins can replace the natural protein and can be used immunological detection of specific antibodies against the beta toxin and vaccine research. These approaches were successful in maintaining the antigenicity of the epitope using bioinformatics tools, significantly minimize the time and efforts in generating recombinant protein with high antigenicity.

Acknowledgments: We acknowledge and also appreciate the financial support provided by Razi Vaccine and Serum Research in Mashhad and University of Isfahan for this research.

REFERENCES

