IN SILICO STUDIES ON THE EFFECT OF GRISEOFULVIN ON TUBULIN PROTEIN OF CRYPTOCOCCUS NEOFORMANS AND ITS IN VITRO VALIDATION

Neelabh, Karuna Singh

*Corresponding author: karunasingh5.bhu@mail.com

doi: 10.15414/jmbfs.2017.6.6.1280-1283

ARTICLE INFO

Received 16. 11. 2016
Revised 28. 3. 2017
Accepted 19. 4. 2017
Published 1. 6. 2017

Regular article

OPEN ACCESS

ABSTRACT

Griseofulvin is a well known drug against dermatophytes. It is particularly prescribed for an infection called scalp ringworm or tinea capitis. In general, griseofulvin inhibits the tubulin protein that is responsible for the cell division. Not much is known about the effect of griseofulvin on Cryptococcus neoformans. Therefore, the authors made an effort to check the activity of griseofulvin against it. The web servers (T-Coffee, Bluues simulation and CASTp) and software (Autodock 4.0) have been used in order to determine the activity of griseofulvin against the beta subunit of tubulin protein of C. neoformans. The results obtained from the in silico studies show a high affinity of griseofulvin towards the beta chain of tubulin protein. The negative value of binding energy (-9.02 kcal/mol) also shows that the complex is thermodynamically favourable and stable. These in silico results were further validated by MIC assay showing 74.1% inhibition of C. neoformans (isolate no. 5) against griseofulvin.

The present study reports that apart from dermatophytes, the drug has significant effect on C. neoformans and it may be used in the combinatorial therapy against the same.

Keywords: Cryptococcus neoformans; Griseofulvin; In silico; In vitro validation

INTRODUCTION

Cryptococcus neoformans is commonly known for causing cryptococcosis and cryptococcal meningitis. Most commonly the infection of C. neoformans starts with lungs but patients having advanced immune suppression end up with meningitis (Centers for disease control and Prevention, 2014). The general treatment for cryptococcosis in patients suffering from asymptomatic or mild to moderate pulmonary infections is fluconazole. This is slightly different from the treatment plan of those who have severe lung infections in which amphotericin B is prescribed in combination with fluconazole (Centers for disease control and Prevention, 2014). But in the recent past, some isolates of C. neoformans have shown resistance against these drugs and patients have witnessed relapse or failure on treatment with fluconazole, fluucytosine and amphotericin B (Lopez-Jodra et al., 2000).

Griseofulvin is an antifungal drug known to be produced by 3 species of Penicillium viz. P. patulum, P. griseofulvum and P. janczewskii (Drugs.com, 2015). It has been used for the treatment of human and animal dermatophytic infections. The reason for its success against dermatophytes is due to its peculiar pharmacological property that after oral administration it is localized in the keratinized cells of skin, hairs and nails. The growth of the dermatophytes parasitizing these cells is thus inhibited and removed by desquamation (Drugs.com, 2015). Many sensitivity studies have been done on the activity of griseofulvin against superficial fungal infections (Millikan, 2016). But anticyptococcal activity of griseofulvin has not been reported yet.

Many studies advocate the in vitro endorsement of the in silico results, owing to the technical limitations of bioinformatics approach. For instance, Nyarady et al. (2005) validated the results of in silico prediction of epitopes by a multipin ELISA. Similarly, the mechanism of serine hydroxymethyltransferase (SHMT) inhibition by pemetrexed was validated by in vitro assays and the calculated interaction energy of pemetrexed in the active site of SHMT and the corresponding predicted binding energy were found to be in good agreement with the values of Ks and Ki obtained in isothermal Titration Calorimetry (Daidone et al., 2011).

The general mode of action of griseofulvin is to interact with tubulin molecule in the fungal cells (Ronnest et al., 2012). Hence, in the current manuscript the activity of griseofulvin against the tubulin protein of C. neoformans has been tested in silico and validation of the same has been done through the minimum inhibitory concentration assay (MIC) following the Clinical and Laboratory Standards Institute (CLSI, 2008) guidelines.

MATERIALS AND METHODS

Retrieval of the structure of griseofulvin and tubulin protein

The structure of griseofulvin (Drug data bank ID: DB00400) was obtained from drug data bank (http://www.drugbank.ca) whereas reference structure of tubulin of Sus scrofa (wild boar) was obtained from the Protein data bank (PDB) (PDB ID: 1TUB). The sequence of beta chain of tubulin of Cneoformans was obtained from National Center for Biotechnology Information (NCBI) (Accession number: XP_568244.1). Modelling was done by Phyre2 webserver with default parameters.

Determination of the active site region of the tubulin protein and docking studies

CASTp server, an online webserver which determines the structural pockets and cavities with the help of Delaunay triangulation and the alpha complex for shape measurements was used in order to determine the active site regions on the tubulin protein. The docking studies were performed through Autodock 4.0 (http://autodock.scripps.edu/). Further, Bluues simulation software (http://protein.bio.unipd.it/blues/) was used to analyse the structural stability of the model. It calculates the total energy of the structure on the basis of generalized Born atom radii.

In vitro studies of griseofulvin against isolates of C. neoformans

Drug griseofulvin under the brand name GRISOVIN-FP was obtained from GlaxoSmithKline and amphotericin B (AMB) (brand name AMPHOTRET) was obtained from Bharat Serums and Vaccines Limited.

Micro-organisms

One reference strain (Ref 1431), two environmental isolates (NCBI accession no. KJ175192 and KJ175193) and five clinical isolates (4CD, 49, CSF2, CNS and CNS45) of Cneoformans were used in the study.
Antimicrobial agent

A stock solution of griseofulvin in dimethyl sulfoxide (DMSO) at a concentration of 100% was prepared (Brilhante et al., 2014). Three controls viz., negative, vehicle (DMSO) and positive (amphotericin B), were used in the current experimental plan. The concentration range of griseofulvin against which the growth of the fungi has been tested is from 2 μg/ml to 1.024 mg/ml.

Preparation of inoculum

The inocula of C. neoformans were prepared from the fresh cultures maintained in Sabouraud Dextrose Agar (SDA) medium for 48 hours at 37°C. Each fungal culture was added to 0.9% sterile saline solution, ensuring gentle scrapping of the fungal colonies with the aid of the inoculation loop to form a fungal suspension. The resulting fungal suspension was adjusted to 0.5 McFarland scale of turbidity. This suspension was further diluted in the ratio of 1:10 with RPMI medium to obtain the final concentration of 1.0-5*10^7 CFU/ml.

In vitro susceptibility testing

The susceptibility testing of C. neoformans against griseofulvin was performed according to the guidelines issued by CLSI for the broth macro-dilution method M27-A3 (CLSI, 2008) with a few modifications. An incubation time span of 72 hours and 35°C temperature was followed in the experiment. Additionally, all the samples were tested in triplicate.

Determination of MIC

MIC of all isolates of C. neoformans was determined using broth macro-dilution method (CLSI, 2008). The optical density of all the samples was measured at 420 nm using spectrophotometer (ThermoScientific UV1).

Statistical analysis

The OD readings obtained at different concentrations of griseofulvin for each isolate were statistically analysed by F test followed by Holm Sidak test.

RESULTS

Griseofulvin is known to interact with tubulin protein which plays an important role during the cell division. The structure of the alpha beta tubulin of C. neoformans was unavailable, therefore, a multiple sequence alignment was performed between the eukaryotic tubulin protein sequences having known structures with C. neoformans tubulin sequence. T-Coffee software was used to carry out the multiple sequence alignment process (Notredame et al., 2000). A very highly sequence similarity (99%) was found between the tubulin protein of C. neoformans and Sus scrofa (Fig 1).

Henceforth, 1 TUB, the respective tubulin protein of S. scrofa was taken as reference in the current study. Top 10 active sites were determined on1TUB. These active sites were docked with griseofulvin. It was observed that the best binding energy was obtained at pocket ID: 167 having an area of 381.6 and a volume of 590.9 (Fig 2). The docked structure of griseofulvin on this pocket has been shown in fig 5 and the docking parameters have been provided in table 1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Free Energy of Binding</td>
<td>-9.02 kcal/mol</td>
</tr>
<tr>
<td>Estimated Inhibition Constant (Ki)</td>
<td>243.84 nM (nanomolar)</td>
</tr>
<tr>
<td>Final Intermolecular Energy</td>
<td>-9.92 kcal/mol</td>
</tr>
<tr>
<td>vdW + Hvbd + desolv Energy</td>
<td>-9.84 kcal/mol</td>
</tr>
<tr>
<td>Electrostatic Energy</td>
<td>-0.08 kcal/mol</td>
</tr>
<tr>
<td>Final Total Internal Energy</td>
<td>-0.45 kcal/mol</td>
</tr>
<tr>
<td>Torsional Free Energy</td>
<td>+0.89 kcal/mol</td>
</tr>
<tr>
<td>Unbound System’s Energy</td>
<td>-0.45 kcal/mol</td>
</tr>
</tbody>
</table>

Estimated Free Energy of Binding or ΔGbnd is the most important parameter amongst various parameters shown in table 1. It is well known that only the negative ΔGbnd are energetically favourable. Here, the ΔGbnd = -9.02, hence this is energetically favourable and the resultant complex formed is thermodynamically stable. Docking result of the reference protein suggested that griseofulvin had a higher affinity to bind the beta chain of tubulin in comparison to its alpha chain therefore, suitable sequence of tubulin beta chain of C. neoformans was searched for modelling it. The modelled structure has been shown in fig 4.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Free Energy of Binding</td>
<td>-9.02 kcal/mol</td>
</tr>
<tr>
<td>Estimated Inhibition Constant (Ki)</td>
<td>243.84 nM (nanomolar)</td>
</tr>
<tr>
<td>Final Intermolecular Energy</td>
<td>-9.92 kcal/mol</td>
</tr>
<tr>
<td>vdW + Hvbd + desolv Energy</td>
<td>-9.84 kcal/mol</td>
</tr>
<tr>
<td>Electrostatic Energy</td>
<td>-0.08 kcal/mol</td>
</tr>
<tr>
<td>Final Total Internal Energy</td>
<td>-0.45 kcal/mol</td>
</tr>
<tr>
<td>Torsional Free Energy</td>
<td>+0.89 kcal/mol</td>
</tr>
<tr>
<td>Unbound System’s Energy</td>
<td>-0.45 kcal/mol</td>
</tr>
</tbody>
</table>

Estimated Free Energy of Binding or ΔGbnd is the most important parameter amongst various parameters shown in table 1. It is well known that only the negative ΔGbnd are energetically favourable. Here, the ΔGbnd = -9.02, hence this is energetically favourable and the resultant complex formed is thermodynamically stable. Docking result of the reference protein suggested that griseofulvin had a higher affinity to bind the beta chain of tubulin in comparison to its alpha chain therefore, suitable sequence of tubulin beta chain of C. neoformans was searched for modelling it. The modelled structure has been shown in fig 4.

Table 1 Parameters of the best docked structure of griseofulvin on tubulin protein (1TUB) of S. scrofa

Figure 1 MSA of beta tubulin of S. scrofa and C. Neoformans

Figure 2 Prediction of active site of tubulin protein of S. scrofa

Figure 3 Best structure obtained after docking griseofulvin on tubulin protein of S. scrofa
It is known to inhibit Ludena et al. Watson, 2004 74.1% inhibition was ts. However, in case of modelled structure of beta tubulin (Image 7x613 to 329x794) instead erbinafine in , structure of tubulin protein tructure of tubulin protein, the binding site at Pocket ID:167 gave the best docking structure obtained from Autodock 4.0 have been provided in table 3. Again the best10 active sites for the modelled structure of beta tubulin were determined and griseofulvin was docked on all these 10 sites. It was observed that pocket ID 103 (active site region of beta tubulin of C.neoformans) having an area of 219.5 and a volume of 258.6 showed the highest binding energy when docked with griseofulvin (Fig 5 and Fig 6). The parameters related to the best docking structure obtained from Autodock 4.0 have been provided in table 3.

Table 3 Parameters of the best docked structure

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Free Energy of Binding</td>
<td>-7.05 Kcal/mol</td>
</tr>
<tr>
<td>Estimated Inhibition Constant (Ki)</td>
<td>6.75 µM (micromolar)</td>
</tr>
<tr>
<td>Final Intramolecular Energy</td>
<td>-7.95 k/mol</td>
</tr>
<tr>
<td>vDW + Hbond + desolv Energy</td>
<td>-7.94 k/mol</td>
</tr>
<tr>
<td>Electrostatic Energy</td>
<td>-0.01 k/mol</td>
</tr>
<tr>
<td>Final Total Internal Energy</td>
<td>-0.52 k/mol</td>
</tr>
<tr>
<td>Torsional Free Energy</td>
<td>+0.89 k/mol</td>
</tr>
<tr>
<td>Unbound System's Energy</td>
<td>-0.52 k/mol</td>
</tr>
</tbody>
</table>

Table 3 shows that ΔGbind = -7.05 which is energetically favourable hence providing evidence that complex formed would be structurally favourable.

Further, MIC of griseofulvin against eight isolates of C. neoformans (one reference, two environmental and five clinical) was found to inhibit the growth of the strain 4C12, CNS, Ref 1431, 9, 49, CSF2, 5 and CNS45 by 35%, 43%, 45%, 39.5%, 54%, 66.6%, 74.1% and 49% respectively on comparison with their respective controls (Table 4).

Table 4 MIC of griseofulvin against eight isolates of C.neoformans

<table>
<thead>
<tr>
<th>Drug</th>
<th>Isolate</th>
<th>Range</th>
<th>MIC</th>
<th>% Inhibition at this MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griseofulvin</td>
<td>C. neoformans</td>
<td>64 µg/ml - 1280 µg/ml</td>
<td>128 µg/ml</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td>Ref 1431</td>
<td>64 µg/ml - 397 µg/ml</td>
<td>28 µg/ml</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>4C12</td>
<td>64 µg/ml - 1280 µg/ml</td>
<td>128 µg/ml</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>CNS</td>
<td>64 µg/ml - 397 µg/ml</td>
<td>28 µg/ml</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>64 µg/ml - 397 µg/ml</td>
<td>256 µg/ml</td>
<td>66.6%</td>
</tr>
<tr>
<td></td>
<td>CSF2</td>
<td>64 µg/ml - 1280 µg/ml</td>
<td>256 µg/ml</td>
<td>66.6%</td>
</tr>
<tr>
<td></td>
<td>CNS45</td>
<td>64 µg/ml - 397 µg/ml</td>
<td>256 µg/ml</td>
<td>66.6%</td>
</tr>
<tr>
<td></td>
<td>C. neoformans 9</td>
<td>64 µg/ml - 397 µg/ml</td>
<td>256 µg/ml</td>
<td>66.6%</td>
</tr>
</tbody>
</table>

DISCUSSION

Griseofulvin was the only drug available for treatment of Tinea capitis, a fungal infection caused by dermatophytes until the approval of terbinafine in 2007 (Gupta and Summerbell, 2000; Seebacher et al., 2007). It is known to inhibit microtubule assembly and the growth of the cells by inducing abnormal mitosis and blocking the cells at G2/M phase of cell cycle (Panda et al., 2005; Rebacz et al., 2007). Tubulin is a major structural component of microtubule and consist of α and β subunits (Luduena et al., 1977). It has already been reported that griseofulvin does not disrupt the microtubules, (Watson, 2004) instead it interacts with tubulin or with one or more associated proteins of microtubules (Sloboda et al., 1982; Rosbol et al., 1977; Chaudhari and Luduena, 1996). In the present study, anticyptococcal activity of griseofulvin was performed against eight isolates of C. neoformans and significant (74.1%) inhibition was observed against isolate number 5. However, MIC of griseofulvin was found to be very high than MIC of amphotericin B but low toxicity and pharmacokinetic parameters like high elimination rate of griseofulvin than amphotericin B suggests that it could be a better drug.

In the present study, due to unavailability of structure of tubulin protein of C.neoformans, structure of tubulin alpha beta dimer of S. scrofa was taken as reference. Griseofulvin was found to efficiently bind with beta domain of tubulin. Ten griseofulvin binding sites on tubulin were also predicted. Unlike, Rathinasamy et al. (2010), the binding site at Pocket ID:167 gave the best binding results. However, in case of modelled structure of beta tubulin of C. neoformans the best docking was obtained at Pocket ID:103. Keeping in view, the ability of griseofulvin to inhibit mitosis in fungal cells, to stabilize microtubule dynamics and its high elimination rates, it can be suggested that the drug may be used in combination therapy for the treatment of cryptococcosis. Further, its low toxicity and weak binding to mammalian brain tubulin (Wehland, 1977; Panda et al., 2005) makes it safer for human use. Henceforth, this study will certainly be helpful in designing more potent and specific analogues of griseofulvin against the tubulin domains of C. neoformans with least side effects to the host and will provide understanding about the uniqueness of binding site of griseofulvin.

CONCLUSION

Griseofulvin is a well-known drug against dermatophytes but its activity against C. neoformans is not known. The activity of griseofulvin has been tested against eight isolates of the same. In silico docking results have been validated by
minimum inhibitory concentration assay. The high inhibition in growth gives an understanding that griseofulvin is effective against C. neoformans. The results obtained in this study can be extended and griseofulvin can further be investigated for its effect in in vivo condition. Its use as combinatorial therapeutic is also suggested.

Acknowledgements: One of the authors (Neelabh) gratefully acknowledges ICMR, New Delhi, India for providing the Junior Research fellowship. The authors are also thankful to The Principal, MMV, BHU for providing infrastructure facilities.

REFERENCES

http://www.novapublishers.com/journals/content/53/2/93

http://dx.doi.org/10.1016/0006-2952(95)02406-9

http://10.1016/j.ejmech.2011.02.009

http://dx.doi.org/10.1080/02692830075000427

http://dx.doi.org/10.1093/jac/45.5.645

http://dx.doi.org/10.1201/b14006

http://dx.doi.org/10.1006/jmbi.2000.4042

http://10.1016/j.molimm.2005.06.044

http://dx.doi.org/10.1073/pnas.0501821102

http://dx.doi.org/10.1186/1471-2407-10-213

http://dx.doi.org/10.1158/0008-5472.CAN-07-0663

http://dx.doi.org/10.1021/jm200835c

http://dx.doi.org/10.1016/0014-5793(77)80073-2

http://dx.doi.org/10.1111/j.1439-0507.2006.01350.x

http://dx.doi.org/10.1016/0006-291X(82)91052-X

https://dx.doi.org/10.1201/9781439823378

http://dx.doi.org/10.1016/S0022-2836(77)80055-7

Web addresses

Centers for disease control and Prevention, 2014
http://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/definition.html

Doi not available

Griseofulvin, 2015 https://www.drugs.com/pro/griseofulvin.html