INACTIVATION OF ESCHERICHIA COLI O157:H7 ON GREEN BELL PEPPER BY CHLORINE DIOXIDE SIMULATING PACKAGINGHOUSES PROCESS

Osvaldo López-Cuevas1, José Andrés Medrano-Félix2, Nohelia Castro-del Campo1, Célida Martínez-Rodríguez1, and Cristóbal Chaidez2,3

Address(es):
1Laboratorio Nacional para la Investigación en Inocuidad Alimentaria. Centro de Investigación en Alimentación y Desarrollo A. C., Culiacán, MÉXICO. Carretera a Eldorado km. 5.5 campo El Diez, Culiacán, Sinaloa México P.C. 80110. Phone (52) 667 760-55-36, Fax (52) 667 760-55-37.

*Corresponding author: chaqui@ciad.mx

doi: 10.15414/jmbsfs.2017.7.2.149-152

Received 1. 11. 2016
Revised 22. 8. 2017
Accepted 12. 9. 2017
Published 1. 10. 2017

ABSTRACT

In this study, packaginghouses spraying disinfection process was simulated to compare the effectiveness of aqueous chlorine dioxide and sodium hypochlorite in reducing Escherichia coli O157:H7 on bell pepper surface. Bell peppers inoculated with 7.74 Log10 CFU of E. coli O157:H7 were placed in a rotary mixer (60 rpm), and sprayed with chlorine dioxide and sodium hypochlorite. Chlorine dioxide at 5 mg L−1 during 20-30 s reduces from 7.74 Log10 CFU of E. coli O157:H7 adhered on bell pepper to undetectable numbers, while the exposure with chlorine dioxide at pH 6 and 8 during 10 s was necessary to reduce 4.25 and 3.90 Log10 CFU, respectively. On the other hand, sodium hypochlorite at 200 mg L−1 at pH 6 reduced 2.89, 3.25 and 3.54 Log10 CFU/bell pepper at 10, 20 and 30 s, respectively. Spraying disinfection process using aqueous chlorine dioxide was more effective than sodium hypochlorite applications, therefore chlorine dioxide is an effective alternative to reduce E. coli O157:H7 on bell pepper surface.

Keywords: Disinfection, Sanitizers, Spray washing, Vegetables, Food safety

INTRODUCTION

The increasing worldwide tendency of including fresh produce on the diet has also been related to the occurrence of foodborne illnesses due to consumption of contaminated produce. In the United States, every year occurs 9.4 million episodes of foodborne illnesses, 55,961 hospitalizations and 1,351 deaths; much of these cases, reported as outbreaks, have been related to the consumption of contaminated fruits and vegetables, (Scallan et al., 2011; CDC, 2006; CDC, 2008; CDC, 2013). Several studies using microbial source tracking indicate that cross-contamination offers to bacteria, parasites and virus a pathway to reach fruits and vegetables (Beuchat, 1996; Ravaliya et al., 2014; Harwood et al., 2014). Microbial contamination throughout the production chain may occur as a consequence of inadequate or scarce sanitation process during production chain, resulting in diverse punctual contamination sources, especially when Good Agricultural and Manufacturing Practices are not strictly followed (Cummins et al., 2001; CDC, 2002; CDC, 2003; CDC, 2005; CDC, 2008).

Pathogenic bacteria, such as Escherichia coli O157:H7 has been responsible for at least 18 foodborne outbreaks in the last ten years in the United States, and nine of these were related to vegetables (CDC, 2016) causing economic losses up to $271 million dollars per year (Hoffmann et al., 2015). In order to eliminate pathogens from fruits and vegetables surfaces, the Food and Drug Administration (FDA) published in the Code of the Federal Regulations (21CFR 173 315) a list of chemicals allowed for washing or assisting the peeling of fruits and vegetables (US FDA, 2008) in which chlorine-based disinfectants appear as an alternative for this application.

At present, sodium hypochlorite is the widest sanitizer used for washing fruits and vegetables in packhousings. Several studies confirm the inactivation effect of chlorine. Beuchat et al. (1998) reduced the presence of E. coli O157:H7 on tomato surface in 2.08 Log10 colony forming units per cm2 (CFU/cm2) by spraying with chlorinated water at 200 mg L−1 at pH 6.8. Chaidez et al. (2007) were able to reduce 3 Log10 CFU/tomato of Salmonella enterica serovar Typhimurium (S. Typhimurium) under laboratory conditions when chlorinated water was sprayed (sodium hypochlorite) at 200 mg L−1 at pH 7. However, chlorine has some undesirable characteristics, since alkaline pH and organic matter reduce its effectiveness; in addition, toxic by-products are generated when reacting with organic matter (Beuchat, 1998). Therefore, chloramines, ultraviolet light, gamma rays, ozone, peracetic acid and chlorine dioxide have been evaluated as an alternative to disinfect water and fresh produce external areas (Rudd and Hopkinson, 1989; Banach et al., 2015).

Several studies about chlorine dioxide tested on fruits and vegetables surfaces reported reductions of pathogens from 4 to 7 Log10 CFU (Han et al., 2000a; Du et al., 2003). Also, Singh et al. (2002) showed reductions of 1.72 Log10 CFU/g of E. coli O157:H7 when applied chlorine dioxide at 20 mg L−1 for 15 min on lettuce surface. In another study by Pao et al. (2007) evaluated chlorine dioxide at 20 mg L−1 on tomatoes surface by the immersion method, reaching reductions up to 5 Log10 CFU/cm2 of Salmonella enterica and Erwinia carotovora. Recently, Pao et al. (2009) reduced Salmonella in 5 Log10 CFU/cm2 from tomato surface by immersing in 5 mg L−1 of aqueous chlorine dioxide for 10 s, aided by rotating brushes. Even though aqueous chlorine dioxide is highly effective against pathogenic bacteria, its application in the fresh produce industry is scarce. We hypothesized that aqueous chlorine dioxide applied by spraying on green bell peppers has a better effect on microbial reduction than sodium hypochlorite. Therefore, the objective of this research was to compare the spraying application of chlorine dioxide and sodium hypochlorite in reducing E. coli O157:H7 inoculated on bell pepper surface simulating packhousings disinfection operation.

MATERIALS AND METHODS

Green bell peppers (Capsicum annum L.)

Large-size of green bell peppers (GBP) free of physical injuries, were directly collected from fields provided by a local grower. In order to avoid natural microbial presence, GBP were immersed in 300 mg L−1 of chlorine for 2 min as described by Chaidez et al. (2007). Subsequently they were immersed in sodium thiosulfate solution (1%) for 1 min. Finally, the bell peppers were rinsed with sterile distilled water and dried inside of a biosafety cabinet for 30 min at room temperature (~ 28°C), and then placed in sterile bags and stored at 10°C for 24 h prior to the experiment.
Inoculum preparation

A strain of E. coli O157:H7 (CETC 4076) was used for the assays. Previous to the experiment, the strain was subjected to confirmation by multiplex PCR, amplifying the genes hlyA, espA, eaeA, fliC, stx1 and stx2 as described by Wang et al. (2002). Once confirmed, E. coli O157:H7 was grown in Trypticase Soy Broth (BD Biosciences, Mexico) and incubated at 37°C for 24 h with constant agitation and centrifuged at 13,800 x g for 10 min at 4°C. The supernatant was discarded and the cell pellet was washed twice to minimize non-cellular components associated with the solution and after diluting using phosphate buffered solution (PBS) as described by Wang et al. (2002). Appropriate dilutions were spread plate on mFC agar (BD Difco Laboratories, USA) with roseolic acid [10 mL of a 1% solution in 0.2N NaOH per litre], and incubated at 37°C for 24 h yielding an inoculum of 9.3 Log₁₀ CFU/mL.

Disinfectants preparation

First, chloride dioxide gas was generated with a Chlorine Dioxide Plant (Bello Zon type CDR8-170, Prominent^a) generator, using as precursors hydrochloric acid at 30% and sodium chlorite at 25% under the manufacturer specifications. Second, chloride dioxide gas was dissolved in 20 L of sterile distilled water in an amber airtight container, and subsequently adjusted to 2 and 5 mg L⁻¹; whereas for the preparation of chlorine solutions, sodium hypochlorite (Clorox® 5%) was used and adjusted to 200 mg L⁻¹ by diluting it in sterile distilled water. The concentrations of chlorine dioxide and sodium hypochlorite were determined by using DPD (N,N-diethyl-p-phenylenediamine), method 10126 and 8021, respectively, with a spectrophotometer 2010 DPD colorimetric method (DR 2010, Hach Co. Ames, IA, USA) as described by APHA (1998). The pH solutions were adjusted with phosphoric acid to 6 and 8 (Pinnacle 530 pH meter, Corning, USA). Phosphate buffered solution was used as a control treatment in order to determine the dragging spray effect in both disinfectants and pH levels. The solutions were prepared 1 h before use.

Green bell peppers inoculation

Disinfected GBP were placed in a sterile bag containing 50 mL of a E. coli O157:H7 suspension (9.3 Log₁₀ CFU/mL) and manually agitated for 1 min, then let them dry in a bio-safety cabinet for 1 h at 25°C and stored at 4°C overnight to allow bacterial adherence to surface. In order to determine E. coli O157:H7 adhered concentration, the inoculated GBP were rubbed with a sterile sponge (Nasco Whirl-Pak[®] Speci-Sponge 18 oz) for 1 min, then each sponge was placed in a bag containing 25 mL of sterile distilled water and vigorously massaged for 1 min. Subsequently, an aliquot of 1 mL was taken to perform the microbial enumeration as described in the inoculum preparation section (APHA, 2001). This procedure was repeated three times.

Disinfectant’s treatments evaluation

Disinfection was carried out to simulate the passage of GBP through a washing conveyor belt in a packinghouse. Briefly, bell peppers were inoculated as described in the green bell peppers inoculation section. The bell peppers were placed in a rotary mixer spin (Rotamix RKVSD, ATR, MD, USA) at a speed of 60 rpm and sprayed from a distance of 30 cm, which is the distance that the sprinkler is placed in the conveyor belt at the packinghouses (Chaidze et al., 2007). Each disinfectant solution was applied for 10, 20 and 30 s at 25°C and the spent volumes sprayed were 19.5, 38.3 and 57.45 mL, respectively (Table 1). In order to stop the disinfectant bactericidal activity and to quantify the bacterial concentration, we placed the GBP on each side of the packinghouses. Each GBP was taken, and the remaining GBP solution was applied to the next side of the GBP (Beuchat et al., 1999). Each side was washed 2 times with sterile distilled water and vigorously massaged for 1 min. A 1 mL-aliquot was taken from the bag (as described in green bell peppers inoculation section) to perform the microbial enumeration as described in the inoculum preparation section (APHA, 2001). This procedure was done in triplicate.

Table 1 | Treatments applied on bell pepper inoculated with E. coli O157:H7.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration (mg L<sup>-1</sup>)</th>
<th>pH</th>
<th>Contact time (s)/Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>10</td>
<td>19/5</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>2</td>
<td>10</td>
<td>20/38.3</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>5</td>
<td>10</td>
<td>30/57.45</td>
</tr>
<tr>
<td>Sodium hypochlorite</td>
<td>200</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Statistical Analysis

A three-factor completely randomized design in triplicate was established. The analysis of variance (ANOVA) was performed using the MINITAB Software version 14.0. Comparisons between means were determined using Tukey test with a significance level of p < 0.05.

RESULTS AND DISCUSSION

Disinfectant activity of sodium hypochlorite on GBP

The use of sodium hypochlorite and chlorine dioxide for reduction of E. coli O157:H7 from bell pepper surface, showed different and significant results according to disinfectant product (p=0.000), pH (p=0.013) and time of contact (p=0.000), furthermore, the interaction pH-disinfectant showed significant differences, indicating that lowering pH values can negatively affect the bactericidal effect of both disinfectants (Table 2).

Table 2 | Interaction pH-disinfectant for the reduction of E. coli O157:H7

<table>
<thead>
<tr>
<th>Product</th>
<th>pH</th>
<th>Reduction (Log)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaClO</td>
<td>6</td>
<td>3.23</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>ClO<sub>2</sub></td>
<td>6</td>
<td>6.58</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.56</td>
<td></td>
</tr>
</tbody>
</table>

The application of sodium hypochlorite at 200 mg L⁻¹ and pH 6 on inoculated bell peppers showed reductions of 2.89, 3.25 and 3.54 Log₁₀ CFU/GBP at contact times of 10, 20 and 30 s, respectively. However, at pH 8 the bactericidal activity of sodium hypochlorite against E. coli O157:H7 was negatively affected, being necessary 30 s of contact time to achieve maximum reductions of 2.82 Log₁₀ CFU/GBP (Figure 1), suggesting that pH 6 favours better conditions to obtain free chlorine and disinfectant effect. Results for sodium hypochlorite at pH 6 were similar to that obtained by Chaidze et al. (2007) whom achieved 3 Log₁₀ CFU reduction of S. Typhimurium attached to tomato surfaces by spraying 200 mg L⁻¹ of sodium hypochlorite for 30 s at pH 7. In this work, a higher reduction was achieved probably because of the acidic pH of the solution, which exerted lethal activity of chlorine solutions given by the amount of hypochlorous acid (HOC1) as free chlorine at pH closer to 6 (Beuchat, 1998). In a similar study, Beuchat et al. (1998) inoculated E. coli O157:H7 on tomatoes disinfecting them by spraying 5 or 6 times with chlorinated water at 200 and 2000 mg L⁻¹ at pH 6.8 letting chlorine to act for 1, 2, 3, 5 and 10 min, achieving a maximum reduction level at 5 min (2.08 and 2.06 Log₁₀ CFU/cm² at 200 and 2000 mg L⁻¹, respectively), showing that chlorine provides a lethal reduction of no more than 3 Log₁₀ CFU/cm² of E. coli O157:H7. In this study, the reduction was higher than mentioned above despite that sodium hypochlorite was inactivated with sodium thiosulfate after disinfectant application, suggesting that pH 6 and the prolonged spraying could help to reduce the pathogen, since the reduction achieved was 3.25 and 3.54 Log₁₀ CPU/GBP at pH 6 and contact time of 20 and 30 s, respectively. This may be attributed to the measuring dimensions by cm² by Beuchat et al. (1998) and measures by complete green bell pepper in our study.

Figure 1 | Effect of sodium chloride and aqueous chlorine dioxide in reducing E. coli O157:H7 on green bell pepper. Control = 0. Chlorine dioxide = 2 mg L⁻¹ and 5 mg L⁻¹; Chlorine = 200 mg L⁻¹. Values are mean ± standard error (n=3).
Disinfectant activity of chlorine dioxide on GBP surface

The use of chlorine dioxide resulted in the best option for microbial reduction on bell pepper surface. In this regard, the application of 5 mL L⁻¹ chlorine dioxide achieved the maximal reductions of E. coli O157:H7, showing at pH 6 and pH 8, reductions of 7.74 Log₁₀ CFU/GBP at contact times of 20 and 30 s, respectively. Interestingly, the time of 10 s showed favourable reductions of 4.25 and 3.9 Log₁₀ CFU/GBP at pH 6 and pH 8, respectively. Sodium hypochlorite treatments at 30 s and pH 8 reduced more than 2 Log₁₀ CFU/GBP, as well as chlorine dioxide at pH 8. Results indicate that disinfectant concentration levels, contact time and pH influenced the effectiveness of both disinfectants. It was also observed that aqueous chlorine dioxide at 2 mg L⁻¹ can reduce E. coli O157:H7 from GBP surface at pH 6 in 30 s to close to 3 Log₁₀ CFU/GBP, while at pH 8 and contact time of 20 s were achieved more than 2 Log₁₀ CFU/GBP of reduction. The effectiveness of chlorine dioxide treatments was improved using 5 mg L⁻¹, with noticeable effect by the pH of the solution.

Han et al. (2000b) inoculated E. coli O157:H7 on GBP and its population had a maximum reduction of 8.04 Log₁₀ CFU when gaseous chlorine dioxide was applied at 0.60 mg L⁻¹ concentrations at 20°C for 30 min with a relative humidity of 90-95%. They concluded that gaseous chlorine dioxide concentration was an important factor in reducing the bacteria adhered to fresh produce surface. It is important to mention that subchronic effects (failure in thyroid metabolism by decrease of serum thyroxine) were observed in African Green monkeys when chlorine dioxide was administered in drinking water during 30-60 days, however these effects were observed after the fourth week of exposure at high dose of chlorine dioxide (100 mg/L); on the other hand, no toxic effects were observed in human volunteers who ingested 1 mL of chlorine dioxide in drinking water (Bercz et al., 1982), suggesting that the exposure to low dose do not show significant adverse effects. It is important to mention also that in this investigation, the exposure was in the GBP at low concentrations of 2 and 5 mg/L during 10 to 30 seconds, further reducing the possible adverse effects in humans. On the other hand, the phosphate buffered solution (control treatments) showed significant reductions. The highest reduction obtained with control treatment was 30 s at pH 6 achieving a reduction of 3.11 Log₁₀ CFU/GBP, followed by treatment 30 s at pH 8 which reduced 2.72 Log₁₀ CFU/GBP; however, there was no significant difference between both treatments (p<1), which can be a “dragging effect” of spraying water. However, during “dragging” the bacteria is only detached from the surface, however, it does not mean a bactericidal effect that ensure bacterial elimination, which is necessary to ensure the absence of pathogenic bacteria in rinsing water, given it probable re-use for packinghouse activities or releasing in the environment, becoming in a potential source of contamination. As shown by Pao et al. (2007) whom proved that washing with water can remove the microbial load from the fruits surface, but these are able to survive in water, becoming it a contamination route. A few studies have been done on washing fruits and vegetables simulating the spraying process in agricultural packinghouses. In this study both disinfectants achieved good bacterial reductions than those established by the scientific advisory group of US EPA, (1997) which states that, in order to consider the effectiveness of a disinfectant, it has to reduce at least 2 Log₁₀ CFU of the microorganism adhered to the surface of fruits and vegetables. In this study, reductions of E. coli O157:H7 were up to 7.74 Log₁₀ CFU/GBP by chlorine dioxide at 5 mg L⁻¹ and a contact time of 20 s regardless of pH. These results suggest that chlorine dioxide can be considered as a viable alternative to chlorine in green bell peppers by using the spray-washing technique in agricultural packinghouses. The differences in reduction of this study compared to the previously mentioned may be due to different inoculation methods, as well as initial microbial concentration, contact time, type of fruit, disinfection system, disinfectant forms, and enumeration method. More research is needed to assess aqueous chlorine dioxide simulating spray-washing technique of fruit and vegetables against various microorganisms such as Gram (+) bacteria, plant pathogens, protozoan of importance in public health, and enteric viruses.

CONCLUSION

Chlorine dioxide can be considered as a viable alternative to conventional disinfection using Sodium hypochlorite in green bell peppers by the spray-washing technique in agricultural packinghouses. However, it is necessary to perform additional research focused on different vegetables and other public health-related pathogens, in order to validate the disinfection process using chlorine dioxide.

Acknowledgments: The authors thank MSc. Jorge Hernández, and MSc. Werner Rubio for their technical support.

REFERENCES

http://apps.who.int/iris/bitstream/10665/44351/1/WHO_FSF_FOS_98.2.pdf?ua=1

