IMPACT OF IN VITRO DIGESTION PHASES ON ANTIOXIDANT PROPERTIES OF MONASCAL WAXY CORN FROM 2-STEP FERMENTATION

Kitisart Kraboun¹*, Putkrong Phananmong¹, Worasit Tochampa², Nitipong Jitrepotch², Kamonwan Rojsuntornkitti², Wassana Chatdamrong³, and Teeraporn Kongbangkerd²

Address(es):
¹Division of Food Safety Management and Technology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand.
²Department of Agro-Industry, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand.
³Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.

*Corresponding author: Kitisart.k@mail.rmutk.ac.th

ARTICLE INFO
Received 20. 9. 2017
Revised 23. 11. 2017
Accepted 5. 2. 2018
Published 1. 4. 2018

ABSTRACT
The stability of monascal waxy corn (MWC) during in vitro digestion of MWC on bioaccessibility, using a standardized in vitro gastrointestinal digestion was focused on DPPH free radical scavenging ability, chelating ability on Fe²⁺, monacolin K and citrinin content of MWC fermented by Monascus purpureus TISTR 3090. The simulation of in vitro digestion was comprised of two stages: gastric and intestinal digestion. The results were found that, after gastric digestion, monacolin K and citrinin contents, DPPH free radical scavenging ability and chelating ability on Fe²⁺ of MWC of the sample were increased 1.35, 8.69, 33.33 and 13.47 %, respectively, suggesting a release of high potential antioxidants. After pancreatic digestion, however, monacolin K and citrinin contents and DPPH free radical scavenging ability and chelating ability on Fe²⁺ between soluble and insoluble MWC were decreased between 14.69 and 76.92 % which these values were lost during treatment with pancreatin. It indicated that pancreatic digestion causes reduced antioxidant activity between soluble/insoluble fractions while the gastric digestion promoted more releasing the antioxidant activities.

Keywords: Stability; Monascal waxy corn; In vitro digestion

INTRODUCTION
Monascal rice or angkak is one of functional foods which has been used in East Asian countries for centuries. Monascal rice is a dietary staple and is used to make rice wine, as a flavoring agent, and to preserve the flavor and color of fish and meat (Bunnoy et al., 2015). Monascus purpureus is a red mold species, which produces the various hydrolyzing enzymes in order to convert the starch substrates (white rice) into the secondary metabolites biosynthesis during the fermentation, i.e. the complexes formed between significant antioxidants and Monascus pigments (Kongbangkerd et al., 2014). Monascus leads to the production of monacolin K and several antioxidants affecting DPPH free radical scavenging ability, inhibition of peroxidation, reducing power and chelating ability on Fe²⁺(Yang et al., 2006). Moreover, monacolin K is a cholesterol-lowering agent. The mechanism of action monacolin K to block cholesterol production is an HMG-Co A (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibited competitively with respect to HMG-Co A (Saito et al., 1991). According to this standpoint, Monascus pigments have been only determined through in vitro antioxidant activities and they showed high Monascus antioxidant activities from monascal rice products (Yang et al., 2006). Besides, the antioxidant activities of monascal products after and/or during gastrointestinal digestion are doubted. Hence, the antioxidant activities of this product should be analyzed through mimicking in vitro gastrointestinal digestion. This model digestion benefit is a first approach to predict the in vivo antioxidant activities of substances (Emmons et al., 1999; Zielinski and Kozlowska, 2000). Therefore, this research was aimed to determine monacolin K and citrinin contents and antioxidant capacities of MWC employing in vitro study.

MATERIAL AND METHODS
Conventional fermentation method and 2-step fermentation of MWC

Conventional fermentation or step 1, 100 g of waxy corn seeds and 12.08 % of monosodium glutamate (MSG) (equivalent to 1.00 % N; content) were put into a flask 500 mL. The mixture was sterilized in an autoclave at 121 °C for 15 min and then left until cool down. About 5 mL of 10⁷ spores mL/spore suspension of M. purpureus obtained from actively growing slants in sterile water was inoculated into sterilized waxy corn and incubated at 25 °C for 12 days. Step 2 fermentation, MWC was then reincubated with the same volume and spore suspension contents and continuously fermented with the same condition as the conventional method for another 12 days (Kraboun et al., 2013). Then, the product was dried in an oven at 40 °C for 24 h. A fine powder (20 mesh) was obtained using a mill (Retsch ultra centrifugal mill and sieving machine, Haan, Germany). The sample was determined DPPH free radical scavenging ability, chelating ability on Fe²⁺, monacolin K and citrinin content.

Study on the antioxidant stability of Monascus pigment from MWC via in vitro digestion

In vitro digestion of MWC, the technique of Miller et al. (1981), modified to our requirements, was followed. It was comprised of two stages: gastric and intestinal digestion. Shortly before use, 0.4 g of pepsin was dissolved in 2.5 mL of 0.1 M HCl. For intestinal digestion, 0.1 g of pancreatic and 0.625 g of bile salts were dissolved in 25 mL of 0.1 M NaHCO₃. One gram of MWC with a final volume of 10 mL of milli-Q water was put together. The pH of the mixture was adjusted to 2 with HCl 6 N and a pepsin solution was added at a proportion of 0.05 g of pepsin/g of sample. The mixture was incubated at 37°C in a shaking water bath at 110 oscillations/min for 2 h for the gastric digestion. Then, the pH of the mixture was adjusted to pH 6 with 1 M NaHCO₃ dropwise. For the intestinal digestion, the digest and 2.50 mL of pancreatin + bile salt mixture was added. The pH was then adjusted to pH 7.5 with 1 M NaHCO₃, and samples were incubated at 37°C at 110 oscillations/min for 2 h. After gastrointestinal digestion, the digestive enzymes were inactivated by heat treatment for 4 min at 100°C in a polyethylene glycol bath. The samples were then cooled by immersion in an ice bath and centrifuged at 3200 x g for 60 min at 4°C (CS-6R centrifuge, Beckman) to separate soluble and non-soluble fractions. Monocolin K and citrinin contents and DPPH free radical scavenging ability and chelating ability on Fe²⁺ were determined both of the samples after the gastric and intestinal digestion.
DPPH radical scavenging activity

The scavenging activity (H·/e·-transferring ability) against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) was measured spectrophotometrically by following Velazquez et al. (2003). Each 1-20 mg/mL of aliquot of 40 µL appropriately diluted extracts mixed with 200 µL of 0.02 mM DPPH solution and methanol 4 mL. Samples were kept for 15 min at 25 °C and the absorbance was measured at 517 nm. The absorbance of a blank sample containing the same amount of solvent was also measured. The extent of decolourisation is calculated as a percentage reduction of absorbance and this is determined as a function of concentration and calculated relative to the 0.1-0.01 mM of equivalent Trolox concentration. The radical scavenging activity is expressed in mmol of equivalent Trolox per gram of sample (mmol Trolox/mL) with interpolation to 50% inhibition (IC50).

Chelating ability on ferrous ions

Chelating ability on ferrous ions was evaluated spectrophotometrically by a slightly modified method of Kuo et al. (2004). Three hundred µL of 2 mM FeSO4·H2O were mixed with 1-20 mg/mL of each aliquot of 500 µL test samples before addition of 600 µL of 5 mM ferrous. After the incubation at 25 °C for 10 min, 5 mL of ethanol was added and the absorbance was measured at 562 nm. IC50 values (mg extract/mL) are the effective concentration at which ferrous ions was chelated by 50% by interpolation from linear regression analysis.

Monacolin K analysis

An 0.5 g sample was extracted with 25 mL of 70% ethanol at 50°C for 2 h, followed by filtration through a 0.2 µm membrane (Chayawat et al., 2009) and the extract was analysed by HPLC. The HPLC system consisted of Shimadzu LC-10AT VP Liquid Chromatograph, a FCV-10AL VP pump, an LDC Analytical SpectroMonitor 3100 detector set at 238 nm and an LDC Analytical CI-4100 integrator. A chromatography column Ascentis C18, 5µm, 250x4.6 mm was connected to a 20 µL loop injector. An isotropic mobile phase of acetonitrile/water in the ratio of 65:35 (by vol.) was used. The flow rate and temperature were 1.0 mL/min and 28°C, respectively (Friedrich, et al., 1995). Monacolin K dissolved in 70% ethanol was used as a standard.

Citrinin analysis

Citrinin analysis was described by Lim et al. (2010). A 1 g sample was extracted with a solution (acetone : ethyl acetate = 1:1, v/v) at 65°C for 90 min under vigorous shaking. The supernatant was obtained by centrifugation at 1,600 g for 10 min followed by filtration through a 0.45 µm PTEE filter unit (National Scientific, Rockwood, TN). The citrinin was determined by HPLC using a chromatography column Ascentis C18 column (4.6 x 250 mm). The mobile phase consisted of methanol/acetonitrile/ 0.1% phosphoric acid (3:3:4, v/v/v) and the analysis was performed with a fluorescence detector set at excitation and emission wavelengths of 325 and 500 nm, respectively. The flow rate was 0.6 mL/min and the sample was spiked to confirm the presence of citrinin.

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Monacolin K content (mg/kg dry weight)</th>
<th>DPPH radical scavenging ability</th>
<th>Chelating ability on Fe2+ (% reduction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monacolin K</td>
<td>79.52 ± 1.00</td>
<td>80.61 ± 9.00</td>
<td>1.35</td>
</tr>
<tr>
<td>Citrinin</td>
<td>10.30 ± 0.05</td>
<td>11.50 ± 1.28</td>
<td>8.69</td>
</tr>
<tr>
<td>DPPH</td>
<td>0.00 ± 0.00</td>
<td>0.02 ± 0.004</td>
<td>33.33</td>
</tr>
<tr>
<td>Chelating ability</td>
<td>20.4 ± 4.0</td>
<td>95.67 ± 9.4</td>
<td>13.47</td>
</tr>
</tbody>
</table>

*Percentages of the total increase at the end of the digestion process. Different letters within the same row indicate statistical differences (one-way ANOVA and Duncan test. P ≤ 0.05). Values are mean ± S.D of triplicate determinations.

Soluble and insoluble MWC after in vitro gastric and pancreatic digestions

Following simulation of gastric digestion, soluble and insoluble MWC were then incubated for 2 h digestion under conditions mimicking those of the duodenum. The results of monacolin K and citrinin contents, DPPH free radical scavenging ability and chelating ability on Fe2+ are shown in Table 2. Monacolin K and citrinin contents and DPPH free radical scavenging ability and chelating ability on Fe2+ between soluble and insoluble MWC were lost between 14.69 and 76.92% during treatment with pancreatin. Rufian-Henares and Delgado-Andrade (2009) confirmed that dietary antioxidants were highly sensitive to the mild alkaline conditions in the small intestine and suggested that, during digestion in the duodenum, a proportion of the compounds may be transformed into different structural forms with different chemical properties. Moreover, light and O2 are two important factors to consider as they can alter the shapes and properties of phenolic compounds, due to oxidative degradation and polymerization reactions (Talbot and Howard, 1999). The antioxidant activities and monacolin K and citrinin contents in soluble fraction from the MWC were less than those in soluble fraction. It is possible that acid and enzymatic hydrolysis influenced on the release of monacolin K and phenolic compounds in soluble fraction from MWC which this experiment was agreed with Ohta et al. (1994) reported an increase between the soluble antioxidants from food matrix by alkaline hydrolysis.
CONCLUSION

For its stability after gastric digestion, the digestive process allowed an increase of 1.35% of monocalin K content, 8.69% of citrinin content and DPPH free radical scavenging ability and chelating ability on Fe²⁺ of digested MWC increased in the range of 13.47% - 33.33%. After pancreatic digestion, it has been demonstrated that monocalin K and citrinin contents, DPPH free radical scavenging ability and chelating ability on Fe²⁺ decreased both soluble and insoluble MWC in the range of 14.69% - 76.92%, indicating that the simulation of pancreatic digestion caused reduction of these antioxidant activities. However, this mimicking gastrointestinal digestion is a in vitro model only in order to know a trend for mechanism of action of in vivo human condition so that in vitro methods need to be further improved and validated with more in vivo animal and human studies (Bermudez-Soto et al., 2007).

REFERENCES


