REGULAR ARTICLE

PROXIMATE AND CHEMICAL PROPERTIES OF SOME UNDERUTILIZED NIGERIAN WILD MUSHROOMS

Mobolaji Adenike Titilowo*1,2, Anthonia Olufanke Oladuro2, Olu Odeyemi2

Address(es): Mobolaji Adenike Titilowo, PhD
1Department of Microbiology, Osun State University, Oke-Baale, Osogbo, Nigeria
2Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
*Corresponding author: mobolaji.adeniyi@uniosun.edu.ng

ABSTRACT
This investigation aims at determining the nutritional value of twenty-three underutilized wild macrofungi from a biodiversity forest in Southwest Nigeria. The mushroom species collected across the ligneous (woody) and terrestrial (soil) habitats were analysed for proximate (moisture, protein, fibre, lipid, ash and carbohydrate), minerals (potassium, sodium, phosphorus, magnesium, calcium, iron and zinc) and vitamins A and C content following standard analytical procedures. Interestingly, all the mushrooms had high moisture (78.91%) and those harvested from soil debris in the terrestrial habitat contained significantly high protein content (26.80 - 48.68%). Dietary fibre was in the range of 0.20 and 42.37%; low lipid (0.12 - 9.89%) and ash (1.25 - 14.08%) were also recorded. Furthermore, all the samples contained high carbohydrate except Macropleotia procera (2.01%). Minerals varied across the habitats and ranged as follows: potassium (258.13 - 8972.00 mg. 100 g-1), sodium (89.36 - 425.92 mg. 100 g-1), phosphorus (0.32 - 375.51 mg. 100 g-1), magnesium (9.39 - 79.32 mg. 100 g-1) and calcium (7.98 - 37.82 mg. 100 g-1). Low iron (0.55 - 1.32 mg. 100 g-1) and zinc (2.21 - 4.98 mg. 100 g-1) were obtained. While vitamin A ranged between 0.41 and 1.41 mg. 100 g-1, vitamin C was from 4.68 to 6.93 mg. 100 g-1. Conclusively, the mushrooms investigated are a good source of nutrients and thus, can be exploited as foods or food supplements.

Keywords: wild mushrooms, habitats, nutrient composition, minerals, vitamins, Nigeria

INTRODUCTION
Mushrooms are important constituents of forest produce and very significant in the human diet (Gbolagade et al., 2006; Jonathan et al., 2013). They are spore-bearing fruitbodies of fungi growing on soil or its food substrates, with some existing in natural habitats in a mycorrhizal relationship with trees (Onohoa and Obi-Adumanya, 2010), and are abundant during the rainy season in the tropics (Adeniyi et al., 2018a). Mushrooms were formerly grouped under the Kingdom Plantae that does not photosynthesize, now, classified under divisions Basidiomycota and Agaricomycota of the Fungi Kingdom (Thatatoi and Sindevsachan, 2014).

During the growing season of mushrooms in the wild, women, men, and children in rural communities, practice traditional hunting of edible varieties (Jonathan, 2002; Ayodele et al., 2011) for diverse purposes including nutritional and medicinal (Odeboke, 2005; Okhuoya et al., 2010), augmenting family income (Osemwegie and Okhuoya, 2009; Okhuoya et al., 2010; Ayodele et al., 2011), amongst others. Generally, mushrooms are rich in proteins, vitamins and minerals, but low in cholesterol levels (Belewu and Belewu, 2005; Afukwa et al., 2015). Factors including the growing site, substrate, and mushroom types are crucial to their nutrient composition (Nasiri et al., 2012; Okwulehie et al., 2014). They are considered an alternative rich source of meat, fish, vegetables, and fruits and ideal supplements for many low vitamin food materials in human diets (Afukwa et al., 2013).

Globally, the nourishment potential of the over 14,000 wild mushroom taxon’s has long been outshined by the well-known cultivated edible species such as Lentinus edodes, Pleurotus species, and Agaricus bisporus (Wasser, 2002; Shelley and Geoffrey, 2004; Nakalembre et al., 2015). However, in some developing countries of the world including India, Uganda and Kenya, the dietary contents of some wild species are reported with much emphasis on the varieties known to be safe for consumption (Johnsby et al., 2011; Musieba et al., 2013; Kumari and Atri, 2014; Nakalembre et al., 2009; 2015).

In spite of the proliferation of wild mushrooms in the nooks and crannies of Nigeria, there is still a paucity of information on their nutritional values. Few edible varieties in the genera Agaricus, Lentinus, Pleurotus, Schizophyllum, Volvoriella, Phytophlyra, Russula and the highly-priced Termitomyces are commonly reported (Egwisem et al., 2011; Afukwa et al., 2013; Ayodele and Okhuoya, 2009; Ijoma et al., 2015). This represents only about 5 % of the previously reported wild Nigerian mushroom (Adeniyi et al., 2018a). In the current study, the proximate, minerals and vitamins A and C content of twenty-three underutilized wild macrofungi from a biodiversity forest in Southwest Nigeria were determined.

MATERIALS AND METHODS

Sample collection and presumptive identification

Exactly 10 specimens of 23 wild mushroom species were collected from the biodiversity forest of Environmental Pollution Science and Technology (ENPOST) farm, Ido-Ijesa, Ilesa, Southwest Nigeria located at latitude 4°42’30” E to 4°42’45” E and longitude 7°36’55” N to 7°37’10” N. After harvest, mushrooms were presumptively identified using standard keys and comparison of the surface morphologies with existing literature (Swordu et al., 2013; Odeyemi and Adeniyi, 2015). Following probable identification, 3 to 9 different carpophores of each species were cleaned, dried and ground for further analysis.

Edibility test
Mushrooms with characteristic woody or tough texture and small-sized were classified as inedible. The soft fleshy ones were screened for the presence of toxin following the methods previously described (Feeney et al., 2014; Ohiunka et al., 2016). A droplet of fresh mushroom juice was placed on a piece of old paper print, allowed to dry and HCl was dropped on it. A blue spot indicated a positive reaction for the presence of a toxin.
Proximate analysis of mushroom samples

Proximate analysis including moisture, protein, dietary fibre, lipid, ash and carbohydrate of the mushrooms were performed accordingly (AOAC, 2016).

Mineral determination of mushroom samples

Atomic absorption spectrophotometric (AAS) (Buck Scientific, 210VGP, UK) was employed in the determination of Mg, Ca, Fe and Zn using oxidizing air-acetylene flame at 285.2 nm, 422.6 nm, 248.3 nm, and 213.3 nm respectively, following the manufacturer’s instruction. Determination of sodium (Na) and potassium (K) were done using flame photometry (Jenway, PPF7, UK) following the manufacturer’s guide.

The spectrophotometry method using Yellow Vanado molybdate was used in the determination of phosphorus in the mushroom samples (AOAC, 2016).

Determination of vitamins A and C

The chemicals and reagents used included HPLC-grade. Analytical reagent-grade acetonitrile and methanol (Tedia, USA) and vitamins A and C standards (Sigma, Dorset) were used for the analysis.

Vitamin A

One gram (1 g) of pyrogallic acid, 70 ml ethanol and 30 ml (50 %) KOH were added to 10 g mushroom powder, stirred, and refluxed for 40 min using a water bath (50 ± 2 °C). Extracts were obtained three times using 50, 30 and 20 ml ether. Doubly distilled water was used to neutralize the extract, anhydrous sodium sulphate added to dehydrate it and further concentrated to 5 ml using a water bath (50 ± 2 °C). Methanol was added to the concentrate to 10 ml mark, filtered using a 0.45 μm membrane, and finally subjected to HPLC analysis.

Reversed-phase (RP) HPLC analysis was performed with the Agilent 1100 series HPLC system (Agilent, USA), including a diode array detector. The column was made of stainless steel Agilent Eclipse XDB-C18 column (5 μm, 4.6 × 150 mm) and methanol and UV detection was recorded at 325 nm for vitamin A. Separation was based on isocratic elution and the solvent flow rate was maintained at 1 ml min⁻¹. Twenty microlitre of mushroom extract was directly injected into the HPLC column. Identification was done by comparing their retention times with those of known standards. All procedures were carried out under subdued light conditions. Standard solutions of vitamin A were prepared from stock stored in the dark at −20 °C by serial dilution to concentrations of 0.1, 1/2, 5, and 10 mg per litre of vitamin A. Twenty microlitre of the standard solution was injected, and peak areas were determined to generate standard curves.

Vitamin C

Ten grams (10 g) of mushroom powder was mixed with extracting solution prepared by dissolving 15 g of metaphosphoric acid with 40 ml acetic acid and made up to 500 ml with distilled water. The mixture was filtered through Whatman No. 1 filter paper and samples were extracted in triplicate. Ascorbic acid standard solution was prepared by weighing 100 mg ascorbic acid, dissolved and made up to 100 ml with metaphosphoric acid – acetic solution. The calibration line was converted to a line arrange based on four measured concentration levels. Quantification of ascorbic acid content was performed on an Agilent HPLC system. Chromatographic separation was achieved on an RP-HPLC column through the isocratic delivery of a mobile phase (A/B: 33/67; A: 0.1M potassium acetate, pH = 4.9, B: acetonitrile: water (50:50)) at a flow rate of 1 ml min⁻¹. UV absorbance was recorded at 254 nm at room temperature.

Data analysis

All experiments were carried out in triplicates. Data analyses were performed using SPSS IBM version 23 software. All data were expressed as mean ± standard deviation. The difference in means was evaluated using ANOVA and Duncan multiple test in case of variance heterogeneity. Values with a probability level of less than 0.05 were considered significant. Nutritional distance and similarity among mushrooms were determined and dendrogram obtained using a complete linkage approach.

RESULTS AND DISCUSSION

Presumptive identification of mushroom samples

Mushrooms play significant roles in biogeochemical recycling of elements in the environment, human nutrition and dietetics, and medicines (Odeyemi et al., 2013). In this study, a total of 23 different mushroom samples were collected between April and October, 2018 at ENPOST farm, Ido-Ijesa, Osun, Southwestern Nigeria, and classified into 17 genera, namely: Amanita, Auricularia, Cantharellus, Ganoderma, Hydnum, Inonotus, Lentinus, Macrolepiota, Marasmiellus, Oxytus, Pleurotus, Polyborus, Stereum, Termitomyces, Trametes and Tricholoma. Representative pictures of the mushrooms are shown in figure 1. All the genera had one species each except Auricularia (2), Termitomyces (4), Trametes (2) and Tricholoma (2). These mushrooms had been previously reported (Zoberi, 1973; Alofe, 1985; Gbolagade et al., 2006; Oyetayo, 2009; Okhuoya et al., 2010; Adedayo, 2011; Djelloul and Samraouli, 2011; Johns et al., 2011; Nwodu et al., 2013; Adeniyi et al., 2018a).

In nature, mushrooms grow on lignocellulose containing substrates (Jonathan et al., 2013; Adeniyi et al., 2018a). While some grow on soil or wood substrates, others exist in mycorrhizal relationship with trees (Onuoha and Obi-Adumanya, 2010). In the current study, eight (8) of the mushrooms were from terrestrial habitats whereas the remaining fifteen (15) were of the ligneous origin. This corroborates Adeniyi et al. (2018a) who detected higher mushroom species from the ligneous habitat than the terrestrial. This could probably be attributable to the abundance of lignocellulose substrates, which support the growth of mushrooms on the farm. All the terrestrial mushrooms grew directly on soil debris except Pleurotus tuber-regium, whereas the ligneous mushrooms grew on woody substrates including decaying Cola nitida, Mangifera indica, Bambusa vulgaris leaves, Cordyline australis, and Mangifera indica, decaying Elaeis guineensis and unidentified burnt tree associated with ternate nest (Tab 1).

Edibility of the mushroom samples

All the mushrooms from the terrestrial habitat were fleshy, as against those from the ligneous habitat that were either fleshy, woody or tough. Presumptively, nine of the mushrooms (Ganoderma applanatum, Hydnum peckii, Hydnum sp., Inonotus radiatus, Marasmiellas candisus, Oxytus populinus, Stereum hirsutum, Trametes ochracea, and Trametes pubescens) were inedible. twelve (Auricularia auricular-juda,
Auricularia polytricha, Cantharellus cibarius, Lentinus subnudus, Macrolepiota procera, Pleurotus tuber-regium, Termitomyces striatus, Termitomyces bulborhizus, Termitomyces robustus, Termitomyces letestui, Tricholoma inocybeoides and Tricholoma ustale) edible, one (Amanita cokeri) poisonous suspect and one (Polyporus sp.) with unknown edibility status (Tab 1).

Figure 1 Representative pictures of the mushroom samples
Legend: a - Auricularia polytricha, b - Amanita cokeri, c - Ganoderma applanatum, d - Inonotus radiatus, e - Macrolepiota procera, f - Marasmiellus candidus, g - Oxyporus populinus, h - Polyporus sp., i - Termitomyces bulborhizus, j - Trametes ochracea
<table>
<thead>
<tr>
<th>S/N</th>
<th>Mushroom</th>
<th>Habitat</th>
<th>Substrate</th>
<th>Texture</th>
<th>Edibility</th>
<th>Date of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amanita cokeri</td>
<td>Terrestrial</td>
<td>Soil debris</td>
<td>Fleshy</td>
<td>Poisonous / suspect</td>
<td>05/04/2019</td>
</tr>
<tr>
<td>2</td>
<td>Auricularia auricular-judaie</td>
<td>Ligneous</td>
<td>Dead Cola nitida stem log</td>
<td>Fleshy</td>
<td>Edible</td>
<td>29/05/2019</td>
</tr>
<tr>
<td>3</td>
<td>Auricularia polytricha</td>
<td>Ligneous</td>
<td>Dead Mangifera indica stem log</td>
<td>Fleshy</td>
<td>Edible</td>
<td>21/06/2019</td>
</tr>
<tr>
<td>4</td>
<td>Cantharellus cibarius</td>
<td>Ligneous</td>
<td>Decaying Elaeis guineensis</td>
<td>Fleshy</td>
<td>Edible</td>
<td>17/04/2019</td>
</tr>
<tr>
<td>5</td>
<td>Ganoderma applanatum</td>
<td>Ligneous</td>
<td>Dead Cola nitida stem log</td>
<td>Woody</td>
<td>Inedible</td>
<td>19/05/2019</td>
</tr>
<tr>
<td>6</td>
<td>Hydnellum peckii</td>
<td>Ligneous</td>
<td>Bambusa vulgaris leaves</td>
<td>Tough</td>
<td>Inedible</td>
<td>14/05/2019</td>
</tr>
<tr>
<td>7</td>
<td>Hydnum sp.</td>
<td>Ligneous</td>
<td>Cordyline australis tree</td>
<td>Tough</td>
<td>Inedible</td>
<td>25/04/2019</td>
</tr>
<tr>
<td>8</td>
<td>Inonotus radiatus</td>
<td>Ligneous</td>
<td>Dead Mangifera indica stem log</td>
<td>Woody</td>
<td>Inedible</td>
<td>16/06/2019</td>
</tr>
<tr>
<td>9</td>
<td>Lentinus subnudus</td>
<td>Ligneous</td>
<td>Dead Mangifera indica stem log</td>
<td>Fleshy</td>
<td>Edible</td>
<td>23/04/2019</td>
</tr>
<tr>
<td>10</td>
<td>Macropleista procera</td>
<td>Terrestrial</td>
<td>Soil debris</td>
<td>Fleshy</td>
<td>Edible</td>
<td>10/05/2019</td>
</tr>
<tr>
<td>11</td>
<td>Marasmiellus candidus</td>
<td>Ligneous</td>
<td>Decaying Elaeis guineensis</td>
<td>Fleshy</td>
<td>Inedible</td>
<td>13/05/2019</td>
</tr>
<tr>
<td>12</td>
<td>Oxyporus populinus</td>
<td>Ligneous</td>
<td>Dead Cola nitida stem log</td>
<td>Woody</td>
<td>Inedible</td>
<td>19/05/2019</td>
</tr>
<tr>
<td>13</td>
<td>Pleurotus tuber-region</td>
<td>Terrestrial</td>
<td>Sclerotium on soil debris</td>
<td>Fleshy</td>
<td>Edible</td>
<td>02/05/2019</td>
</tr>
<tr>
<td>14</td>
<td>Polyporus sp.</td>
<td>Ligneous</td>
<td>Dead Cola nitida stem log</td>
<td>Fleshy</td>
<td>Unknown</td>
<td>08/06/2019</td>
</tr>
<tr>
<td>15</td>
<td>Stereum hirsutum</td>
<td>Ligneous</td>
<td>Dead Mangifera indica stem log</td>
<td>Tough</td>
<td>Inedible</td>
<td>20/05/2019</td>
</tr>
<tr>
<td>16</td>
<td>Termitomyces striatus</td>
<td>Ligneous</td>
<td>Unidentified burnt tree associated with termite nest</td>
<td>Fleshy</td>
<td>Edible</td>
<td>12/06/2019</td>
</tr>
<tr>
<td>17</td>
<td>Termitomyces bulborhizas</td>
<td>Terrestrial</td>
<td>Termite mound</td>
<td>Fleshy</td>
<td>Edible</td>
<td>09/10/2019</td>
</tr>
<tr>
<td>18</td>
<td>Termitomyces robustus</td>
<td>Terrestrial</td>
<td>Termite mound</td>
<td>Fleshy</td>
<td>Edible</td>
<td>14/10/2019</td>
</tr>
<tr>
<td>19</td>
<td>Termitomyces letestui</td>
<td>Terrestrial</td>
<td>Termite mound</td>
<td>Fleshy</td>
<td>Edible</td>
<td>12/10/2019</td>
</tr>
<tr>
<td>20</td>
<td>Trametes ochracea</td>
<td>Ligneous</td>
<td>Dead Cola nitida stump</td>
<td>Woody</td>
<td>Inedible</td>
<td>25/08/2019</td>
</tr>
<tr>
<td>21</td>
<td>Trametes pubescens</td>
<td>Ligneous</td>
<td>Dead Mangifera indica stem log</td>
<td>Woody</td>
<td>Inedible</td>
<td>25/08/2019</td>
</tr>
<tr>
<td>22</td>
<td>Tricholoma inocybeoides</td>
<td>Terrestrial</td>
<td>Soil debris</td>
<td>Fleshy</td>
<td>Edible</td>
<td>07/05/2019</td>
</tr>
<tr>
<td>23</td>
<td>Tricholoma usitale</td>
<td>Terrestrial</td>
<td>Termite nest</td>
<td>Fleshy</td>
<td>Edible</td>
<td>25/08/2019</td>
</tr>
</tbody>
</table>
Proximate analysis of the mushroom samples

Moisture contents

Water exists virtually in all foods, and its importance in many physiological processes cannot be over-emphasized. Generally, all the mushrooms analysed in our study contained high moisture ranging from 80.91 to 98.44% (Tab 2) and agrees with Gbolagade et al. (2006) and Johnsy et al. (2011) whose report ranged from 85.4 to 98.5% and 87.3 to 95.17% respectively. High moisture contents in mushrooms contribute to low shelf life owing to high water activity that enhances microbial growth and enzyme activity (Gbolagade et al., 2006; Johnsy et al., 2011). Moisture variation may be linked to prevailing environmental growth conditions (Mattila et al., 2001).

Proteins

Protein contents of mushrooms vary according to the genetic make-up of species and disparity in physicochemical properties of growth substrate (Ragunathan and Swaminathan, 2003; Sanmee et al., 2003; Agrahar-Murugkar and Subbulakshmi, 2005). Overall, mushrooms harvested from soil debris (terrestrial habitat) were higher in protein than those from the ligneous habitat (Tab 2). This may be due to high organic matter in substrates constituting the habitat. Of all the higher fungi investigated, M. proceru was the richest in protein (48.68 ± 0.13%). This disagrees with Kumari and Atri (2014) who reported 19.95 ± 1.06% for the same mushroom. The protein value (45.50 ± 0.06%) obtained for A. cokeri, a poisonous suspect mushroom was higher than the presumed edible Termitomyces and Tricholoma species suggesting it as an attractive and useful species for biotechnological manipulation as a food source. The lowest protein content was detected in Hydnum sp. (11.48 ± 0.06%). Protein obtained for other edible species including A. auricular-judae (19.60 ± 0.06%), A. polytricha (12.29 ± 0.06%), L. subnudus (18.74 ± 0.12%) and P. tuber-regium (19.84 ± 0.67%) were higher than the report of Johnsy et al. (2011) but lower than the findings of Gbolagade et al. (2006). The difference in geographical location and substrates may be responsible for this.

Dietary fibres

Current trends recommend a drive towards diets that contain a greater amount of plant foods as implicated in preserving and/or improving personal wellbeing (Rodríguez et al., 2006; Usha and Suguna, 2014). Dietary fibres of the mushrooms studied varied across habitats (Tab 2). With the exception of T. ochracea (0.20 ± 0.01 %) and G. applanatum (42.37 ± 0.02%), the values recorded fell within the ranges reported elsewhere (Breene, 1990; Chye et al., 2008; Egwim et al., 2011; Johnsy et al., 2011; Musieba et al., 2013; Kumari and Atri, 2014). The significantly high dietary fibre in G. applanatum indicates the presence of high leftovers of plant cells resistant to hydrolysis by the alimentary enzymes of man (Capuano, 2017). However, the value obtained in T. ochracea is comparable with broccoli (0.15%), red radish (0.19%), white radish (0.16%), sweet yellow pepper (0.11%), spring onions (0.21%) and yam (0.18%) (Januškevičius et al., 2012). Dietary fibre benefits in preventing of heart diseases, colon cancer and diabetes (Kassegn, 2018).

Lipids

Lipids provide the major calorific value in foods and excess intake can consequentialy lead to coronary heart disease and other health issues (dos Passos et al., 2013). Mushrooms are low in lipids dominated by unsaturated fatty acids, contributing less to the energy required in human diet and serving as a means of combating obesity (Wani et al., 2010). Generally, the current investigation ranged between 0.12 and 9.89% (Tab 2). This tally with the observation of Maftoun et al. (2015). Difference in mushroom species may account for the varied lipid contents observed in the study.

Ash

Ash contents indicate the presence of mineral contents in any given food sample (Kassegn, 2018). Other than T. pubescens (0.64 ± 0.01%), T. inocybeoides (1.25 ± 0.01%) and T. ustale (1.37 ± 0.01%), ash contents obtained for others correspond with the outcomes of Gbolagade et al. (2006) and Colak et al. (2009) who had 4.7 ± 15.0% and 2.00 to 11.38% respectively (Tab 2). Previous study reported relatively high ash contents in Termitomyces microcarpus (14.13%) and Termitomyces clypeatus (16.87%) (Nakalemba et al., 2015).

Carbohydrates

Carbohydrates are good sources of energy desirable for breakfast and weaning food formulae (Kassegn, 2018). In mushrooms, carbohydrate content constitutes the bulk of fruiting bodies accounting for 50 to 65% on a dry weight basis (Wani et al., 2010; Di Aniba et al., 2015). In the present investigation, carbohydrate ranged from 2.01 to 67.73% with M. proceru and T. pubescens having the lowest and highest values of 2.01 ± 0.03% and 67.44 ± 0.06% respectively (Tab 2). Our findings on M. proceru concur with Egwim et al. (2011) who indicated 8% but opposes Kumari and Atri (2014) who reported 60.82%. Similarly, Usha and Suguna (2014) reported lower carbohydrate content (28.5 %) for A. polytricha in their study. In the case of Johnsy et al. (2011), 50.20, 43.4, 47.83 and 33.23% were documented for P. tuber-regium, P. ostreatus, Lentinus squarrosulus and A. auricular-judae respectively.
Table 2 Proximate composition of the twenty-three mushrooms (dry weight basis)

<table>
<thead>
<tr>
<th>Mushroom</th>
<th>MC [%]</th>
<th>P [%]</th>
<th>DF [%]</th>
<th>LD [%]</th>
<th>A [%]</th>
<th>CHO [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amanita cokeri</td>
<td>95.84±0.08^a</td>
<td>45.50±0.06^a</td>
<td>12.44±0.01^a</td>
<td>3.81±0.01^a</td>
<td>12.32±0.01^a</td>
<td>21.50±0.62^a</td>
</tr>
<tr>
<td>Auricularia auricular-judaæ</td>
<td>95.55±0.30^ab</td>
<td>19.60±0.06^a</td>
<td>2.41±0.02^a</td>
<td>0.53±0.03^a</td>
<td>2.27±0.01^a</td>
<td>57.40±0.04^a</td>
</tr>
<tr>
<td>Auricularia polytricha</td>
<td>94.92±0.68^a</td>
<td>12.29±0.06^a</td>
<td>4.32±0.01^a</td>
<td>0.55±0.01^a</td>
<td>11.33±0.03^a</td>
<td>67.44±0.06^a</td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td>95.94±0.09^a</td>
<td>31.05±0.06^a</td>
<td>4.56±0.01^a</td>
<td>9.30±0.01^b</td>
<td>11.33±0.03^a</td>
<td>29.94±0.04^a</td>
</tr>
<tr>
<td>Ganoderma applanatum</td>
<td>95.12±0.28^a</td>
<td>21.20±0.12^a</td>
<td>4.27±0.02^a</td>
<td>6.60±0.01^a</td>
<td>2.09±0.01^a</td>
<td>17.64±0.12^a</td>
</tr>
<tr>
<td>Hydnumellum peckii</td>
<td>94.31±0.01^a</td>
<td>21.40±0.00^a</td>
<td>18.55±0.03^a</td>
<td>1.14±0.01^a</td>
<td>4.57±0.01^a</td>
<td>43.94±0.01^a</td>
</tr>
<tr>
<td>Hydnum sp.</td>
<td>91.25±0.07^a</td>
<td>11.48±0.06^a</td>
<td>7.34±0.01^a</td>
<td>6.09±0.01^a</td>
<td>14.02±0.03^b</td>
<td>48.18±0.08^a</td>
</tr>
<tr>
<td>Inonotus radiatus</td>
<td>80.91±0.13^a</td>
<td>16.20±0.06^a</td>
<td>12.41±0.02^a</td>
<td>0.93±0.01^a</td>
<td>14.88±0.01^b</td>
<td>44.96±0.03^a</td>
</tr>
<tr>
<td>Lentinus subedus</td>
<td>95.31±0.44^a</td>
<td>18.74±0.12^a</td>
<td>29.91±0.01^a</td>
<td>1.00±0.01^a</td>
<td>14.08±0.02^a</td>
<td>27.73±0.12^a</td>
</tr>
<tr>
<td>Macrolepiota procera</td>
<td>95.59±0.16^ab</td>
<td>48.68±0.13^a</td>
<td>14.35±0.01^a</td>
<td>8.59±0.02^a</td>
<td>10.83±0.02^a</td>
<td>2.01±0.04^a</td>
</tr>
<tr>
<td>Marasmiellus candidus</td>
<td>94.54±0.28^a</td>
<td>31.57±0.06^a</td>
<td>8.38±0.01^a</td>
<td>6.48±0.02^a</td>
<td>7.69±0.01^b</td>
<td>38.14±0.05^a</td>
</tr>
<tr>
<td>Oxyurus populatus</td>
<td>88.87±0.19^a</td>
<td>19.44±0.06^a</td>
<td>11.77±0.01^a</td>
<td>0.12±0.01^a</td>
<td>4.77±0.01^a</td>
<td>51.90±0.08^a</td>
</tr>
<tr>
<td>Pleurotus tuber-region</td>
<td>95.41±0.28^ab</td>
<td>19.84±0.67^a</td>
<td>6.45±0.01^a</td>
<td>0.26±0.01^a</td>
<td>2.62±0.01^a</td>
<td>55.91±0.64^a</td>
</tr>
<tr>
<td>Polyporus sp.</td>
<td>92.45±0.06^a</td>
<td>15.30±0.00^a</td>
<td>13.03±0.00^a</td>
<td>0.44±0.01^a</td>
<td>2.34±0.01^a</td>
<td>56.27±0.03^a</td>
</tr>
<tr>
<td>Stereum hirsutum</td>
<td>83.09±0.13^a</td>
<td>14.67±0.00^a</td>
<td>13.25±0.01^a</td>
<td>1.97±0.01^a</td>
<td>2.43±0.02^p</td>
<td>56.48±0.03^a</td>
</tr>
<tr>
<td>Termitomyces strigatus</td>
<td>94.91±0.14^a</td>
<td>26.53±0.12^a</td>
<td>12.36±0.01^a</td>
<td>7.44±0.01^d</td>
<td>4.76±0.01^l</td>
<td>42.69±0.43^a</td>
</tr>
<tr>
<td>Termitomyces bulbobrizus</td>
<td>98.44±0.20^a</td>
<td>27.53±0.06^a</td>
<td>6.25±0.01^a</td>
<td>4.74±0.03^a</td>
<td>5.97±0.01^a</td>
<td>49.00±0.01^a</td>
</tr>
<tr>
<td>Termitomyces robustus</td>
<td>97.80±0.15^a</td>
<td>31.00±0.06^a</td>
<td>7.36±0.01^a</td>
<td>6.50±0.02^a</td>
<td>4.36±0.01^a</td>
<td>39.51±0.08^a</td>
</tr>
<tr>
<td>Termitomyces leetusti</td>
<td>96.95±0.08^c</td>
<td>26.80±0.06^a</td>
<td>5.46±0.14^a</td>
<td>5.21±0.14^a</td>
<td>7.45±0.01^a</td>
<td>48.80±0.06^c</td>
</tr>
<tr>
<td>Trametes ochracea</td>
<td>93.35±0.20^f</td>
<td>16.04±0.06^a</td>
<td>0.20±0.01^a</td>
<td>5.43±0.01^b</td>
<td>9.26±0.01^f</td>
<td>57.27±0.06^b</td>
</tr>
<tr>
<td>Trametes pubescens</td>
<td>94.10±0.13^b</td>
<td>12.77±0.06^a</td>
<td>16.61±0.01^a</td>
<td>1.82±0.01^a</td>
<td>0.64±0.01^a</td>
<td>67.73±0.08^a</td>
</tr>
<tr>
<td>Tricholoma inocybeoides</td>
<td>96.10±0.13^c</td>
<td>41.30±0.06^a</td>
<td>9.21±0.01^a</td>
<td>4.92±0.01^a</td>
<td>1.25±0.01^a</td>
<td>31.45±0.06^c</td>
</tr>
<tr>
<td>Tricholoma utilis</td>
<td>96.46±0.20^d</td>
<td>34.43±0.12^a</td>
<td>7.53±0.01^a</td>
<td>9.89±0.01^a</td>
<td>1.37±0.01^a</td>
<td>33.48±0.04^d</td>
</tr>
</tbody>
</table>

Mean with a different letter in each column are significantly different from each other at p < 0.05.

Mean values are averages of 3 values.

Mineral and vitamin compositions of mushroom samples

Potassium

Potassium controls the water and minerals in the blood and tissues, and significant in the transmission of electrical impulses in the heart (Kowey, 2002). Among all the nutrients analysed, potassium predominates other minerals (Tab 3). This is in line with some studies conducted elsewhere (Akyüz and Kirbağ, 2010; Ayodele and Okhuoya, 2009; Okwulehie and Ogoke, 2013; Nakalembe et al., 2015). However, the range of potassium indicated in this study (268.13 - 8972.00 mg/100 g) was higher than those of Gbolagade et al. (2006) (7.8 - 60.1 mg/100 g) and Okwulehie and Ogoke (2013) (112.14 - 164.54 mg/100 g).

Sodium

Sodium is the main electrolyte and major cation outside the cell (Knochel, 1999; Wardlaw and Kessel, 2002). In contrast to some previous studies (Gbolagade et al., 2006; Akyüz and Kirbağ, 2010), the sodium content of mushrooms studied was significantly high (89.36 - 425.92 mg/100 g) (Tab 3). While Gbolagade et al. (2006) documented a range of 0.2 to 6.3 mg/100 g, Akyüz and Kirbağ (2010) had 0.2 to 1.2 mg/100 g. Furthermore, the values obtained exceeded the recommendations of the World Health Organisation (WHO) daily sodium intake (<2000 mg) and the UK government (2400 mg per day) (WHO, 2006; Mohan et al., 2009). High dietary sodium has been found implicated in some health consequences including an increase in blood pressure, hypertension, direct vascular and cardiac damage, obesity, stomach cancer, osteoporosis, kidney stones and severity of asthma symptoms (de Wardener and MacGregor, 2002; Mohan et al., 2009).

Phosphorus

Phosphorus is needed to build strong and healthy bones, sustains normal acid/base balance, supports growth and is involved with the storage and use of energy (dos Passos et al., 2013). In this study, phosphorus was found to vary across habitats and differ significantly (p < 0.05). Its content (0.32 - 375.51 mg/100 g) (Tab 3) was lower than the report of Nakalembe et al. (2015) (10.2 - 16.8 mg/100 g) but higher in Okwulehie and Ogoke (2013) except for Hydnum sp. (23.62 mg/100 g) and Trametes pubescens (0.32 mg/100 g) (Tab 3). The tolerable upper intake level for phosphorus is 3 μg per day for children and 3 to 4 μg per day for adults (Food and Nutrition Board, 2016) suggesting that little dose of the mushrooms is needed in daily diet.

Magnesium

Magnesium ranged from 9.39 to 19.32 mg/100 g (Tab 3) and its lower compared to many common legumes (178 - 197 mg/100 g), whole-grain cereal (121 - 434 mg/100 g) (FAO, 2012), and edible mushrooms (Nakalembe et al., 2015). However, it is higher than Samnee et al. (2003) and Gbolagade et al. (2006) who observed a range of 0.5 - 1.6 mg/100 g and 0.4 - 6.7 mg/100 g respectively. Magnesium is crucial in control of muscle contraction, blood pressure, insulin metabolism, and synthesis of DNA, RNA and proteins (Grober et al., 2015). It plays an important role in nerve transmission and neuromuscular conduction and protection against excessive excitation that can lead to excitotoxicity (Kirkland et al., 2018).

Calcium

Calcium is one of the foremost microminerals in the bone and teeth of human beings and animals and reduces the chance of having cardiac disorder or any heart-related challenge (Titilawa et al., 2018). The obtained values (7.98 - 37.82 mg/100 g) (Tab 3) were comparable to many common kinds of cereals (12 - 51 mg/100 g), starchy food (11 - 43 mg/100 g), meat and poultry products (4 - 69 mg/100 g) (FAO, 2012). However, Chye et al. (2008) obtained a range (77 - 144.7 mg/100 g) higher than ours. Consumption of a very high concentration of calcium may adversely affect the absorption of the essential elements (Nova Scotia Environment, 2005), nonetheless, its paucity could result in osteoporosis and osteomalacia. Hypertension has also been linked to low calcium in the body (Kožlšek, 2003; Titilawa et al., 2018).

Iron

Iron is required for the synthesis of haemoglobin in red blood corpuscles and also aids growth and metabolic processes in humans and animals (Kumar and Puri, 2012; Edward et al., 2013; Vetrimurugan et al., 2017; Titilawa et al., 2018). In this work, the iron content (0.55 - 1.30 mg/100 g) (Tab 3) was within the published data for cabbage (0.6 mg/100 g) and meat (1.6 mg/100 g) (Eyabi, 2001). It was however higher than those observed in previous studies (Gbolagade et al., 2006; Ayodele and Okhuoya, 2009), and lower when compared with the findings of Colak et al. (2009), Patil et al. (2010) and Kumari and Atri (2014). Largely, a low quantity of iron was observed in the mushrooms and fell below the recommended nutritional limit (18 mg) for iron, (Food and Nutrition Board, 2016). Thus, the mushrooms are not good sources of dietary iron.

Zinc

Zinc is a major micronutrient for living organisms. It is present almost in all foods and water as a salt of organic complexes (Swaminathan et al., 2011; Salano, 2013). Generally, the mushrooms in the current study are low in zinc and fell below the 15 mg recommended dietary intake (Food and Nutrition Board, 2016). The range obtained was between 2.21 and 4.98 mg/100 g (Tab 3). This is lower than the results of previous studies (Gbolagade et al., 2006; Nakalembe et al., 2015) but higher than the report of Okwulehie and Ogoke (2013). When zinc is lacking in the diet, it may lead to a reduction in fertility, forfeiture of taste, stunted growth and hypogonadism. Low levels of zinc can as well weaken the body’s immunity (Edward et al., 2013; Titilawa et al., 2018).

Vitamin A

Mushrooms are non-animal sources of vitamin, contributing a very small percentage in human diet and crucial in disease prevention and lengthening of life span (Olaniyi, 2000). The outcome of our work revealed that all the wild mushrooms analysed contained vitamin A (Tab 3). This is contrary to Afifkwa et al. (2013) who detected vitamin A only in Agaricus bisporus among other varieties and with a value higher (38.36 mg/100 g) than what was observed in our case (0.14 - 1.41 mg/100 g). Likewise, Mucseba et al. (2013) investigated vitamin A in P. citrinopileatus and reported a low value (<10 μg/100 g. Our findings agree with vitamin A level reported for some animal and plant materials including butter (0.59 mg/100 g), cheese (0.39 mg/100 g), egg (0.28 mg/100 g), milk (0.04 mg/100 g) and salmon (0.041 mg/100 g).
(Souci et al., 2000). Vitamin A role has been established to include apt sight, reproduction, growth and development, cellular differentiation and immune function (Bowman, 2001).

Vitamin C

The range of vitamin C obtained in this work was from 5.22 to 6.93 mg. 100 g$^{-1}$. While the highest vitamin C content was found in *Pleurotus tuber-regium*, the lowest was detected in *T. pubescens* (Tab. 3). The values indicated that the mushrooms are considered good sources of ascorbic acid. Earlier studies by Sapers et al. (1999), Mattila et al. (2001) and Mattila et al. (2000) reported vitamin C content of up to 7 mg. 100 g$^{-1}$. Also, Muthangya et al. (2014) observed 5.07 to 5.29 mg. 100 g$^{-1}$ in edible sections of mushrooms whereas Musieba et al. (2013) recorded a low value of <1 µg. 100 g$^{-1}$ in *Pleurotus citrinopileatus*. Ascorbic acids are major antioxidants with known health benefits (Rao and Agarwal, 2000). It empowers the body against viral and bacterial attack and also vital in wound healing (Hemilä, 2017). It is vital for the production of collagen, a key structural constituent of tendons, bones, teeth, blood vessels and muscles. Vitamin C enhances iron absorption and regenerates other antioxidants including vitamin E (Brody, 1994). On the contrary, deficiency in vitamin C causes bruising, haemorrhage, dry skin and depression (Olson, 1999). The vitamin is reported to directly interact with radicals in plasma, averting impairment to red cell membranes (Jayakumar et al., 2009).
<table>
<thead>
<tr>
<th>Mushroom</th>
<th>Sodium</th>
<th>Potassium</th>
<th>Magnesium</th>
<th>Calcium</th>
<th>Iron</th>
<th>Zinc</th>
<th>Phosphorus</th>
<th>Vitamin A</th>
<th>Vitamin C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amanita cokeri</td>
<td>280.37±0.01</td>
<td>8972.00±0.05</td>
<td>12.68±0.01</td>
<td>28.04±0.01</td>
<td>1.05±0.01</td>
<td>2.78±0.01</td>
<td>127.56±0.01</td>
<td>1.14±0.01</td>
<td>5.48±0.02</td>
</tr>
<tr>
<td>Auricularia auricular-judae</td>
<td>131.57±0.02</td>
<td>2473.68±0.01</td>
<td>15.36±0.01</td>
<td>8.76±0.01</td>
<td>1.22±0.01</td>
<td>2.33±0.01</td>
<td>159.55±0.02</td>
<td>1.34±0.01</td>
<td>6.25±0.01</td>
</tr>
<tr>
<td>Auricularia polytricha</td>
<td>231.56±0.01</td>
<td>1260.72±0.01</td>
<td>18.56±0.01</td>
<td>17.14±0.01</td>
<td>1.01±0.01</td>
<td>2.32±0.01</td>
<td>93.25±0.01</td>
<td>1.23±0.01</td>
<td>5.34±0.01</td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td>425.15±0.25</td>
<td>5954.62±0.01</td>
<td>15.36±0.01</td>
<td>37.82±0.01</td>
<td>1.24±0.01</td>
<td>3.87±0.02</td>
<td>208.35±0.01</td>
<td>1.12±0.01</td>
<td>6.43±0.02</td>
</tr>
<tr>
<td>Ganoderma applanatum</td>
<td>152.43±0.02</td>
<td>670.73±0.00</td>
<td>17.69±0.01</td>
<td>10.17±0.01</td>
<td>1.30±0.01</td>
<td>3.25±0.01</td>
<td>75.74±0.02</td>
<td>1.22±0.01</td>
<td>5.44±0.01</td>
</tr>
<tr>
<td>Hydnellum peckii</td>
<td>196.25±0.02</td>
<td>1570.10±0.01</td>
<td>10.36±0.01</td>
<td>18.67±0.02</td>
<td>1.30±0.01</td>
<td>3.49±0.01</td>
<td>90.60±0.01</td>
<td>1.23±0.01</td>
<td>6.32±0.01</td>
</tr>
<tr>
<td>Hydnum sp.</td>
<td>174.43±0.01</td>
<td>406.97±0.01</td>
<td>19.32±0.01</td>
<td>29.08±0.01</td>
<td>1.10±0.02</td>
<td>2.21±0.01</td>
<td>23.62±0.01</td>
<td>1.41±0.01</td>
<td>5.38±0.01</td>
</tr>
<tr>
<td>Inonotus radiatus</td>
<td>247.26±0.01</td>
<td>1236.28±0.02</td>
<td>17.67±0.01</td>
<td>36.65±0.02</td>
<td>1.32±0.01</td>
<td>2.54±0.01</td>
<td>80.99±0.01</td>
<td>1.11±0.01</td>
<td>6.22±0.01</td>
</tr>
<tr>
<td>Lentinus subnudus</td>
<td>113.11±0.01</td>
<td>1724.78±0.01</td>
<td>16.32±0.02</td>
<td>9.32±0.11</td>
<td>0.64±0.01</td>
<td>3.13±0.01</td>
<td>154.83±0.01</td>
<td>1.36±0.01</td>
<td>5.56±0.04</td>
</tr>
<tr>
<td>Macrolepiota procera</td>
<td>166.35±0.01</td>
<td>3632.14±0.04</td>
<td>15.84±0.01</td>
<td>9.24±0.02</td>
<td>0.74±0.02</td>
<td>3.25±0.13</td>
<td>70.07±0.01</td>
<td>1.04±0.01</td>
<td>6.32±0.01</td>
</tr>
<tr>
<td>Marasmiellus candidus</td>
<td>329.97±0.05</td>
<td>4241.96±0.01</td>
<td>18.92±0.01</td>
<td>31.43±0.01</td>
<td>1.24±0.01</td>
<td>3.44±0.01</td>
<td>375.51±0.37</td>
<td>1.32±0.01</td>
<td>6.39±0.02</td>
</tr>
<tr>
<td>Oxyporus populinus</td>
<td>199.44±0.01</td>
<td>1453.00±0.01</td>
<td>17.67±0.01</td>
<td>9.51±0.01</td>
<td>0.82±0.01</td>
<td>3.63±0.01</td>
<td>193.94±0.00</td>
<td>1.05±0.07</td>
<td>5.39±0.02</td>
</tr>
<tr>
<td>Pleurotus tuber-regium</td>
<td>115.95±0.01</td>
<td>927.55±0.01</td>
<td>16.29±0.01</td>
<td>19.31±0.01</td>
<td>0.68±0.01</td>
<td>3.44±0.01</td>
<td>80.29±0.01</td>
<td>1.09±0.01</td>
<td>6.93±0.54</td>
</tr>
<tr>
<td>Polyergus sp.</td>
<td>158.03±0.01</td>
<td>1106.22±0.02</td>
<td>10.32±0.01</td>
<td>17.56±0.01</td>
<td>1.30±0.01</td>
<td>3.55±0.01</td>
<td>74.12±0.01</td>
<td>1.02±0.01</td>
<td>5.29±0.02</td>
</tr>
<tr>
<td>Stereum hirata</td>
<td>93.01±0.01</td>
<td>953.49±0.00</td>
<td>9.39±0.02</td>
<td>15.52±0.02</td>
<td>1.13±0.02</td>
<td>3.34±0.01</td>
<td>73.63±0.01</td>
<td>1.18±0.04</td>
<td>6.22±0.01</td>
</tr>
<tr>
<td>Termitomyces striatus</td>
<td>195.34±0.01</td>
<td>5860.46±0.01</td>
<td>16.49±0.02</td>
<td>9.32±0.02</td>
<td>0.69±0.01</td>
<td>3.78±0.01</td>
<td>371.89±0.01</td>
<td>1.12±0.01</td>
<td>6.29±0.02</td>
</tr>
<tr>
<td>Termitomyces balborhizus</td>
<td>167.07±0.01</td>
<td>5250.60±0.01</td>
<td>15.70±0.01</td>
<td>7.98±0.02</td>
<td>0.55±0.01</td>
<td>4.98±0.01</td>
<td>222.55±0.01</td>
<td>1.23±0.01</td>
<td>6.36±0.04</td>
</tr>
<tr>
<td>Termitomyces robustus</td>
<td>198.01±0.01</td>
<td>7673.26±0.01</td>
<td>15.29±0.02</td>
<td>8.24±0.02</td>
<td>1.09±0.01</td>
<td>3.37±0.01</td>
<td>217.15±0.01</td>
<td>1.23±0.01</td>
<td>5.49±0.01</td>
</tr>
<tr>
<td>Termitomyces letestui</td>
<td>310.43±0.01</td>
<td>3668.87±0.01</td>
<td>18.78±0.01</td>
<td>9.42±0.01</td>
<td>1.19±0.01</td>
<td>3.40±0.01</td>
<td>271.50±0.01</td>
<td>1.14±0.01</td>
<td>6.43±0.03</td>
</tr>
<tr>
<td>Trametes ochracea</td>
<td>138.13±0.01</td>
<td>1160.24±0.02</td>
<td>11.66±0.01</td>
<td>27.03±0.01</td>
<td>1.02±0.01</td>
<td>3.53±0.01</td>
<td>86.64±0.01</td>
<td>0.14±0.01</td>
<td>5.22±0.01</td>
</tr>
<tr>
<td>Trametes pubescens</td>
<td>89.36±0.01</td>
<td>268.13±0.01</td>
<td>16.26±0.01</td>
<td>9.64±0.01</td>
<td>1.01±0.01</td>
<td>2.55±0.01</td>
<td>58.03±0.01</td>
<td>1.33±0.01</td>
<td>4.68±0.01</td>
</tr>
<tr>
<td>Tricholoma inocybeoides</td>
<td>425.92±0.01</td>
<td>2608.70±0.00</td>
<td>15.32±0.01</td>
<td>8.84±0.05</td>
<td>1.21±0.01</td>
<td>3.36±0.01</td>
<td>146.71±0.01</td>
<td>1.19±0.01</td>
<td>6.29±0.01</td>
</tr>
<tr>
<td>Tricholoma ustale</td>
<td>292.96±0.01</td>
<td>3281.11±0.21</td>
<td>16.67±0.02</td>
<td>9.77±0.01</td>
<td>1.14±0.00</td>
<td>3.39±0.01</td>
<td>223.34±0.01</td>
<td>1.12±0.01</td>
<td>5.48±0.01</td>
</tr>
</tbody>
</table>

Mean with a different letter in each column are significantly different from each other at *p* < 0.05.
Mean values are averages of 3 values.
Nutritive hierarchical cluster analysis of the mushrooms

Mushrooms fruitbodies are characterized by assimilated mineral constituents whose level depends on, amongst other species, age of mushroom, the diameter of pileus and substratum (Dermirdas, 2001; Falandysy et al., 2001; Mattila et al., 2001). The nutrition hierarchy cluster shows that there is dietary relatedness among the mushroom species irrespective of their habitat, texture or edibility (figure 2). For instance, the fleshy, edible P. tuber-regium and T. inocybeoides in the terrestrial habitat closely associated with woody/tough, inedible G. applanatum and S. hirsutum in the ligneous habitat respectively. Likewise, the fleshy and edible T. striatus and C. cibarius in the ligneous habitat closely related to fleshy, edible T. bulborhizus (terrestrial habitat); and the fleshy, inedible M. candidus in the ligneous habitat found clustered with fleshy, edible M. procerus, T. ustale and T. letestui in the terrestrial habitat (figure 2). Also, the nature of the nutrient-rich organic substrate on which M. candidus, C. cibarius, and T. striatus grew may be responsible for dietary relatedness with mushrooms from terrestrial habitat. Likewise, the presence of sclerotium in P. tuber-regium and decaying debris where Tricholoma inocybeoides were harvested may be the reason their nutrient content is comparable with mushrooms from the ligneous habitat.

CONCLUSION

The nutritional composition of twenty-three underutilized Nigerian wild mushrooms was studied. While eight of the mushrooms were from the terrestrial habitat, fifteen were of the ligneous source. Interestingly, all the mushroom species are rich in moisture, protein, dietary fibre, ash, carbohydrate and minerals including sodium, potassium, calcium, magnesium, zinc, and phosphorus, and vitamins A and C, but low in lipid and iron, an indication that they are highly nutritious; although other sources of sodium must be checked when consuming these mushrooms. Similarly, the nutritive hierarchical cluster analysis shows that the dietary composition of all the mushrooms is related irrespective of their habitat, texture or edibility. Thus, they are potential foods and food supplements and stand to meet the diverse human dietary needs if objectively exploited. Further study is however encouraged to ascertain the safety of these mushrooms for consumption.

Conflicts of interest: The authors declare no conflict of interest.

Author contributions: M.A.T and O.O. designed the experiment, M.A.T. performed the experiment and drafted the manuscript, M.A.T. and A.O.O. analysed the data, A.O.O. and M.A.T. supervised the study. All authors read and approved the final manuscript.

Acknowledgement: This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. However, the authors appreciate the management of ENPOST farm, Ido-Ijesa, Ilesa, Nigeria for permission to collect mushroom samples. Special thanks goes to Dr. O.Y. Titilavo for proof-reading the manuscript.
REFERENCES

Food Chemistry 89, 599-603. https://doi.org/10.1016/j.foodchem.2004.03.042

Food and Nutrition Board (2011). Dietary reference intakes for calcium and vitamin D. Institute of Medicine, National Academies.

Washington, DC: National Academies Press

